Меню
Бесплатно
Главная  /  Пластиковые карты  /  Стратегические решения в условиях неопределенности. Финансовые операции в условиях неопределенности Позиции и действия

Стратегические решения в условиях неопределенности. Финансовые операции в условиях неопределенности Позиции и действия

См. П.Н. Брусов, п. 3.8., А.Н. Гармаш, п. 3.3.2.

Неопределенность будем рассматривать как такое состояние знаний лица, принимающего решения (ЛПР), при котором одно или несколько альтернативных решений приводят к блоку возможных результатов, соответствующих различным состояниям внешней среды («природы»), вероятности которых неизвестны. Обычно это происходит потому, что отсутствуют надежные данные, на основании которых вероятности могли бы быть вычислены апостериори, а также потому, что нет каких-либо способов вывести вероятности априори. В этих условиях для определения наилучших, так называемых рациональных, решений можно использовать элементы теории игр, в частности, игры с природой. В них один игрок (человек) старается действовать осмотрительно, а второй игрок (природа) дей­ствует случайно.

Игры с природой – это игры, в которых неопределенность вызва­на не сознательным противодействием противника, а недостаточной осведомленностью об условиях, в которых действуют стороны. Например, заранее неизвестна погода в некотором регионе или покупательский спрос на некоторую продукцию.

Условия такой игры обычно представляются таблицей решений , в которой строки А 1 , А 2 , ..., А m соответствуют стратегиям ЛПР (лица, принимающего решение), а столбцы В 1 , В 2 , … В n – стратегиям при­роды; а ij – выигрыш ЛПР, соответствующий каждой паре стратегий А i , В j .

Возможные стратегии b 1 b 2 b n
а 1 а 1 1 а 1 2 а 1 n
а m а m1 а m2 а mn

В рассматриваемой ситуации при выборе из множества { а 1 , а 2 ,..., а m } наилучшего решения обычно используют следующие критерии.

1. Критерий Вальда. Основывается на принципе пессимизма (наибольшей осторожности). При выборе решения надо рассчитывать на худший вариант действий со стороны природы. Рекомендуется применять максиминную стратегию. Она выбирается из условия

и совпадает с нижней ценой игры.

2. Критерий максимума. Он выбирается из условия

Критерий максимума является оптимистическим: считается, что природа будет наиболее благоприятна для человека.

где – степень оптимизма (показатель пессимизма-оптимизма) – изменяется в диапазоне .

Критерий Гурвица придерживается некоторой промежуточной позиции, учитывающей возможность как наихудшего, так и наилуч­шего поведения природы. При = 1 критерий превращается в кри­терий Вальда, при = 0 – в критерий максимума. На оказывает влияние степень ответственности лица, принимающего решение по выбору стратегии. Чем больше последствия ошибочных решений, больше желания застраховаться, тем ближе к единице.

4. Критерий Сэвиджа. Суть критерия состоит в выборе такой стра­тегии, чтобы не допустить чрезмерно высоких потерь, к которым она может привести. Находится матрица рисков , элементы которой по­казывают, какой убыток понесет человек (фирма), если для каждого состояния природы он не выберет наилучшей стратегии:

R =

Элементы матрицы рисков находятся по формуле

,

где – максимальный элемент в столбце исходной матрицы.

При принятии решений в условиях неопределенности следует оценивать различные варианты с точки зрения нескольких критериев. Если рекомендации совпадают, можно с большей уверенностью выбрать наилучшее решение; если рекомендации противоречат друг другу, окончательное решение надо принимать с учетом резуль­татов дополнительных исследований.

Пример. В приближении посевного сезона фермер имеет четыре аль­тернативы: А 1 – выращивать кукурузу, А 2 – пшеницу, А 3 – овощи или A 4 – использовать землю под пастбища. Платежи, связанные с указан­ными возможностями, зависят от количества осадков, которые условно можно разделить на четыре категории: B 1 – сильные осадки, В 2 – умерен­ные, В 3 – незначительные, B 4 – засушливый сезон.

Платежная матрица оценивается следующим образом:

Какое управленческое решение должен принять фермер?

Решение.

Следует использовать землю под пастбища.

2. Критерий максимума:

Max(80,90,150,35)=150.

Это соответствует стратегии А 3 – выращивать овощи.

2. Воспользуемся критерием Сэвиджа . Составим матрицу рисков, эле­менты которой находим по формуле

Оптимальная стратегия определяется выражением

В соответствии с этим критерием следует сеять пшеницу.

3. Воспользуемся критерием Гурвица . Оптимальная стратегия опреде­ляется по формуле

Предположим, что степень оптимизма Тогда

т.е. следует принять решение о выращивании овощей.

4. Правило максимизации среднего ожидаемого дохода. Если допустить, что известно распределение вероятностей для различных состояний природы, например эти состояния равновероятны (правило Лапласа равновозможности) то для принятия решения следует найти матема­тические ожидания выигрыша:

Так как максимальное значение имеет М 2 , то следует сеять пшеницу.

Вывод : два критерия одновременно рекомендуют выбор управленческой стратегии А 2 (сеять пшеницу), два критерия рекомендуют стратегию А 3 (выращивать овощи) .

Из таблицы видно, что оптимальное поведение во многом зависит от принятого критерия выбора наилучшего решения, поэтому выбор критерия является наименее простым и наиболее ответственным вопросом в теории игр.

Принятие решений в условиях частичной неопределенности (см. П.Н. Брусов, п. 3.9).

Оптимальная по Парето финансовая операция. Рассмотрим матрицу последствий , i=1,2,…,m, j=1,2,…,n. Альтернатива доминирует по Парето альтернативу , если , j=1,2,…,n, и, по крайней мере, для одного индекса j это неравенство строгое. Доминируемая альтернатива не может быть оптимальным решением, т.к. она по всем показателям не «лучше» доминирующей альтернативы. Альтернатива называется Парето-оптимальной (или оптимально по Парето ), если она не диминируется никакой другой альтернативой.

Все Парето-оптимальные решения образуют множество оптимальности по Парето .

Пример. Для матрицы последствий найти множество альтернатив, оптимальных по Парето.

0,4 0,9 0,5 0,5 0,6
0,6 0,5 0,7 0,8 0,9
0,6 0,3 0,8 0,6 0,7
0,3 0,8 0,5 0,4 0,3
0,1 0,3 0,5 0,4 0,3
0,4 0,8 0,5 0,4 0,5

В таблице – возможные альтернативы (стратегии) ЛПР, – одно из состояний неопределенной реальной ситуации.

Решение.

Стратегия доминирует над стратегиями , и . Следовательно, исключаем 4-ю, 5-ю и 6-ю строки матрицы.

Игроки
0,4 0,9 0,5 0,5 0,6
0,6 0,5 0,7 0,8 0,9
0,6 0,3 0,8 0,6 0,7

Больше доминируемых стратегий нет. Получаем множество оптимальности по Парето, состоящее из трех альтернатив: , , .

Неопределенность относительно состояния системы может быть вызвана двумя обстоятельствами: недостатком ясности, когда не известны все возможные состояния, и недостатком уверенности, когда все состояния известны, но нет возможности точно указать, какое именно реализуется.

Неопределенность также подразумевает отсутствие информации о вероятностном распределении состояний. В противном случае это относится к ситуации риска.

Каким же образом можно принимать решения в ситуации неопределенности?

Если неопределенность вызвана отсутствием ясности, то принять формализованное объективное решение практически не представляется возможным. Нельзя точно оценить альтернативы, когда неизвестно, что вообще может произойти. Следовательно, требуется если не устранить неопределенность, то хотя бы свести ее к недостатку уверенности. Это можно сделать двумя способами:

· либо исследовать явление, порождающее неопределенность, больше узнать про него и выявить все возможные состояния,

· либо принять допущение, ограничивающее множество возможных состояний (например, совокупностью всех известных состояний). Разумеется, такое упрощение отражается на надежности принимаемых решений, но часто оно является единственно возможным выходом.

Если же неопределенность вызвана невозможностью точно предсказать, какое состояние из числа возможных реализуется, то тут также есть два пути:

· либо применить формализованные методы принятия решений в условиях неопределенности, обеспечивающие оптимальный выбор на только основе имеющейся информации об исходах;

· либо попробовать привести все к ситуации риска, получив путем исследований или допущений информацию о вероятностном распределении исходов. Тогда становится возможным применение методов принятия решений в условиях риска, которые дают более взвешенные результаты, при условии, что предполагаемое распределение близко к реальному.

Одним из методов, позволяющих принимать решения в условиях неопределенности, являются так называемые «игры», исследуемые в рамках математической теории игр. Принципиально выделяют два основных вида таких игр:

стратегические игры и

игры с природой.

Аппарат стратегических игр применяется для принятия решений в условиях взаимодействия. Там неопределенность связана с действиями других лиц, которые целенаправленно стремятся максимизировать свой выигрыш. ЛПР не знает точно, что будут делать противники. Однако он может обоснованно предполагать, что они осознанно выбирают стратегии наилучшие для себя и наихудшие для других (в т.ч. и для нашего ЛПР). Методы стратегических игр позволяют выбрать оптимальную стратегию в условиях такого противодействия.

Если же целенаправленного противодействия нет, и неопределенность связана с объективными (независящими от воли конкретных субъектов) обстоятельствами, то применяется аппарат "игр с природой". При этом под "природой" не обязательно подразумевается живая или неживая природа (биосфера, атмосфера и т.д.). Это может быть рынок или иная совокупность субъектов, которые не конфликтуют с нашим ЛПР, а просто совершают непредсказуемые для него действия. Такая "природа" безразлична к выигрышу или проигрышу ЛПР и не стремится обратить его просчеты в сою пользу. Естественно, что логика принятия решений в таких условиях несколько отличается от логики стратегических игр.

Рассмотрим некоторые положения теории игр.

Теория игр –– это наука, изучающая стратегические решения людей, фирм, правительств и других агентов.

Стратегические решения –– это такие решения, которые принимаются с учетом действий других агентов и которые влияют на полезность других агентов.

Ситуации, в которых действия одних агентов оказывают влияние на других агентов, –– то есть такие ситуации, в которых агенты принимают стратегические решения, –– называют стратегическими взаимодействиями (или играми). Агентов, участвующих во данных взаимодействиях, называют игроками. Виды стратегических взаимодействий представлены на рис. 20.

Рис. 20. Виды стратегических взаимодействий.

Игры могут быть представлены в нормальной форме (матрица), когда принятие решений осуществляется одновременно, и в развернутой форме (дерево) – при последовательном принятии решений. Рассмотрим оба способа.

Условия риска и неопределенности характеризуются так называемыми условиями многозначных ожиданий будущей ситуации во внешней среде. В этом случае ЛПР должен сделать выбор альтернативы (Аi), не имея точного представления о факторах внешней среды и их влияния на результат. В этих условиях исход, результат каждой альтернативы представляет собой функцию условий – факторов внешней среды (функцию полезности), который не всегда способен предвидеть ЛПР. Для предоставления и анализа результатов выбранных альтернативных стратегий используют матрицу решений, называемую также платежной матрицей, или матричной игрой . Пример матрицы приведен в табл. 2.

Таблица 2

A1, A2, A3 –альтернативные стратегии действий; S1, S2, S3 – состояние экономики (стабильность, спад, рост и др.); E11; E12; E13; E21; … E33; … – результаты решений.

Числа в ячейках матрицы представляют собой результаты реализации Eij стратегии Ai в условиях Sj. При этом в условиях риска вероятность наступления Sj известна – wj(Sj). Методы принятия решений в условиях риска используют теорию выбора, получившую название теории полезности. В соответствии с этой теорией ЛПР выбирает Ai из совокупности {Ai} (i = 1 … n), которая максимизирует ожидаемую стоимость его функции полезности E,j. В условиях риска при принятии решения основным моментом является определение вероятности наступления состояния среды Sj , т. е. степени риска. После определения вероятности wj(Sj) наступления состояния среды Sj, определяют ожидаемую стоимость реализации каждой альтернативы, которая представляет собой средневзвешенную стоимость E(Ai):

Отметим, что в рассматриваемых нами задачах на принятие решения в качестве исходов Е ij мы будем рассматривать показатели, которые желательно максимизировать - выигрыш, доход, прибыль. К ним применяется принцип "чем больше, тем лучше". Все принципы выбора оптимальной альтернативы будут сформулированы именно для таких показателей.

Если в матрице игры в качестве исходов надо представить показатели, которые подлежат минимизации - убытки, расходы, потери, то здесь возможны два пути:

1) представлять их в матрице виде отрицательных значений. Тогда можно без изменений использовать приведенные далее в книге формулы, операции сравнения и принципы определения оптимальной альтернативы;

2) представлять их в матрице в виде положительных значений. В этом случае необходимо поменять в приведенных в книге формулах: операции максимизации на минимизацию и наоборот, операции сравнения при определении оптимальных альтернатив с "больше" и "больше или равно" - на "меньше" и "меньше или равно", и наоборот.

Дерево решений применяют тогда, когда необходимо принимать последовательный ряд решений. Дерево решений – графический метод, позволяющий увязать точки принятия решения, возможные стратегии Ai, их последствия Ei,j с возможными факторами, условиями внешней среды. Построение дерева решений начинается с более раннего решения, затем изображаются возможные действия и последствия каждого действия (событие), затем снова принимается решение (выбор направления действия) и т. д., до тех пор, пока все логические последствия результатов не будут исчерпаны. Дерево решений строится с помощью пяти элементов:

1. Момент принятия решения.

2. Точка возникновения события.

3. Связь между решениями и событиями.

4. Вероятность наступления события (сумма вероятностей в каждой точке должна быть равна 1).

5. Ожидаемое значение (последствия) – количественное выражение каждой альтернативы, расположенное в конце ветви.

Простейшее решение представляет собой выбор из двух вариантов – «Да» или «Нет» (рис. 20).

Рис. 20. Простейшее дерево решений

После того как стратегическое взаимодействие формально описано, то есть задана игра, нужно эту игру решить. Что значит «решить игру»? 
Решить игру –– значит найти профиль стратегий, который будет сыгран. При этом мы считаем, что игроки ведут себя рационально.

При решении игр могут применяться различные концепции равновесия, как например,

1. Равновесие в доминирующих стратегиях.

2. Равновесие, получаемое исключением доминируемых стратегий.

3. Равновесие Нэша.

Рассмотрим первый случай.

Пусть имеется игра n лиц в нормальной форме, а (s 1 , . . . , s n) –– некоторый про- филь стратегий. Для любого i = 1, . . . , n положим s− = (s 1 ,...,s i-1 ,s i+1 ,...,s n).


Другими словами, s -i –– это набор стратегий всех игроков, кроме i-го, из профиля (s 1 ,...,s n). Множество всех возможных наборов стратегий всех игроков, кроме i-го, обозначим через S -i .

Таблица А

Пусть i = 2 (табл. А). Тогда для любого профиля стратегий (s 1 , s 2) через s -2 обозначается стратегия первого игрока s 1 .
Множество S -2 имеет в этой игре следующий вид: S -2 = {a 1 , a 2 }.

строго доминирующей , если для любой другой стратегии i-го игрока s′ i ∈ S i и любого набора s -i ∈ S -i стратегий остальных игроков выполняется неравенство

u i (s i , s -i) > ui(s′ i , s -i).

При любых стратегиях других игроков платеж, который получает игрок i, играя стратегию s i , больше, чем платеж, который он получает, играя стратегию s′ i .

В примере таблицы А

· стратегия a 1 первого игрока –– строго доминирующая, поскольку при любой стратегии второго игрока приносит первому игроку строго больший платеж, чем любая другая его стратегия.

· стратегия b 1 второго игрока –– строго доминирующая, поскольку при любой стратегии первого игрока приносит второму игроку строго больший платеж, чем любая другая его стратегия.

Стратегия i-го игрока s i ∈ S i называется слабо доминирующей , если для любой другой стратегии i-го игрока s′ i ∈ S i и любого набора s -i ∈ S -i стратегий остальных игроков выполняется неравенство

u i (s i , s -i) ⩾ u i (s′ i , s -i).


Слабо доминирующие стратегии должны удовлетворять чуть более слабому условию, чем строго доминирующие.

Если в таблице А исправить платеж второго игрока 2 на 7 (ячейка а 1, b 2), то стратегия b 1 для второго игрока будет являться уже не строго, а слабо доминирующей, так как есть еще одна стратегия b 2 , платеж которой равнозначный.

Профиль стратегий (s 1 , . . . , s n) называется равновесием в строго доминирующих стратегиях, если для каждого игрока i, i = 1, . . . , n, стратегия s i является строго доминирующей.

В таблице А профиль стратегий (a 1 ,b 1) является равновесием в строго доминирующих стратегиях, поскольку стратегии a 1 и b 1 –– строго доминирующие.

Аналогично, профиль стратегий (s 1 , . . . , s n) называется равновесием в слабо доминирующих стратегиях, если для каждого игрока i, i = 1, . . . , n, стратегия s i является слабо доминирующей.

Если у игрока в некоторой игре есть строго доминирующая стратегия, то есть все основания полагать, что он будет играть именно ее: если он сыграет эту стратегию, то его выигрыш будет максимален. Но игры, в которых у каждого игрока есть строго доминирующая стратегия, встречаются нечасто: равновесие в строго доминирующих стратегиях –– это концепция решения, подходящая не для всех игр.

Рассмотрим известный пример игры – дилемма заключенного .

Предыстория: полиция поймала двоих человек, подозреваемых в совершении ограбления, но у нее не хватает улик против них. Чтобы собрать улики, полиция развела подозреваемых по разным камерам, лишив их возможности обмениваться информацией, и устроила каждому допрос.

У каждого игрока есть две стратегии:

· промолчать

· пойти на сделку со следствием и сдать напарника.

Платежи игроков:

· если оба заключенных будут молчать, то полиция отправит каждого из них в тюрьму по мягкой статье на 1 год.

· если один заключенный выдаст второго, а второй будет молчать, то тот, против кого дали показания, отправится в тюрьму на 10 лет, а другой пойдет на свободу.

· если оба заключенных пойдут на сделку со следствием, то полиция сможет обвинить обоих в совершении ограбления, но каждому из них уменьшат срок до 5 лет.

Матрица игры:

Есть ли у игроков доминирующие стратегии?

У первого заключенного есть строго доминирующая стратегия –– стратегия «Предать».

У второго заключенного тоже есть строго доминирующая стратегия –– стратегия «Предать».

Профиль стратегий (Предать, Предать) –– это равновесие в строго доминирующих стратегиях. А также –– равновесие в слабо доминирующих стратегиях.

Говорят, что профиль стратегий s Парето-доминирует профиль стратегий s′, если:

u i (s) ⩾ u i (s′) для любого игрока i;

u i (s) > u i (s′) хотя бы для одного игрока i.

Профиль стратегий s∗ называется Парето-оптимальным , если не существует такого 
профиля s′, который Парето-доминирует s∗. Является ли равновесный профиль (Предать, Предать) Парето-оптимальным? Нет! Его Парето-доминирует профиль (Молчать, Молчать): если бы оба игрока промолчали, то каждый получил бы больший платеж, чем в равновесии. А другие профили стратегий Парето-оптимальны? Да. Равновесие в дилемме заключенного –– единственный профиль стратегий, который не является Парето-оптимальным!

Теперь рассмотрим равновесие путем исключения строго (или слабо) доминируемых стратегий.

2) Стратегия s i игрока i строго доминирует стратегию s′ i игрока i, если


u i (s i , s -i) > u i (s′ i , s -i) для любого набора стратегий остальных игроков s -i ∈ S -i .

2) Стратегия s i игрока i строго доминируется стратегией s′ i игрока i, если

u i (s i , s -i) < u i (s′ i , s -i) для любого набора стратегий остальных игроков s -i ∈ S -i .

Обозначение: s i ≺ s′ i .

3) Стратегия s i игрока i слабо доминирует стратегию s′ i игрока i, если


u i (s i , s -i) ⩾ u i (s′ i , s -i) для любого набора стратегий остальных игроков s -i ∈ S -i .

4) Стратегия s i игрока i слабо доминируется стратегией s′ i игрока i, если


u i (s i , s -i) ⩽ ui(s′ i , s -i) для любого набора стратегий остальных игроков s -i ∈ S -i .

Обозначение: s i ≼ s′ i .

Стратегия s i игрока i называется строго доминируемой, если существует стратегия s′ i игрока i, которая строго доминирует стратегию s i .

Стратегия si игрока i называется слабо доминируемой, если существует стратегия s′ i игрока i, которая слабо доминирует стратегию s i .

Если у игрока есть строго доминируемая стратегия, то он, будучи рациональным, никогда не будет ее играть: она принесет ему заведомо меньше, чем некоторая другая его стратегия, которую он тоже может сыграть. Оба игрока понимают, что строго доминируемая стратегия ни при каких обстоятельствах не будет сыграна, поэтому в матричной записи игры мы можем исключить столбец или строку, соответствующие этой стратегии.

Рассмотрим игру

1. Исключим стратегию b 1 , так как b 2 ≺ b 3 .

2. Исключим стратегию a 1 , так как a 1 ≺ a 2 .

3. Исключим стратегию b 3 , так как b 3 ≺ b 1 .

Оставшийся профиль (a 2 , b 1) –– это равновесие, полученное исключением строго доминируемых стратегий.

Если в конечной игре (если множество возможных стратегий игрока конечно) в нормальной форме в результате последовательного исключения строго доминируемых стратегий остается матрица размера 1 × 1, то оставшийся профиль называется равновесием, получаемым исключением строго доминируемых стратегий.

Отметим, что:

· не все игры можно решить последовательным исключением строго доминируемых стратегий;

· порядок исключения строго доминируемых стратегий не имеет значения –– в каком бы порядке мы ни исключали такие стратегии, в результате придем к одному и тому же профилю;

· исключая слабо доминируемые стратегии в разном порядке, мы будем получать разные равновесия;

· если в игре есть равновесие в строго доминирующих стратегиях, то оно является и равновесием, получаемым исключением строго доминируемых стратегий;

· равновесие, получаемое исключением строго доминируемых стратегий,
не обязательно является равновесием в строго доминирующих стратегиях.

Равновесие Нэша – еще один тип равновесия, который может быть получен в матрице игры.

Профиль (s∗ 1 ,..., s∗ n) называется равновесием Нэша (NE), если для любого игрока i и любой его стратегии s i ∈ S i выполняется неравенство

u i (s∗ i , s∗ -i) ⩾ u i (s i , s∗ -i).

Иными словами, равновесием Нэша называется такой профиль стратегий, что никому из игроков не выгодно отклониться и сыграть другую стратегию при фиксированных стратегиях других игроков.

Равновесие Нэша названо так в честь известного математика Джона Нэша, лауреата Нобелевской премии по экономике 1994 года «За анализ равновесия в теории некооперативных игр» (совместно с Райнхардом Зельтеном и Джоном Харсаньи).

Мы можем сформулировать алгоритм нахождения равновесий Нэша в конечных играх двух игроков:

1. Для каждой стратегии второго игрока пометим точками наилучшие ответы первого игрока.

2. Для каждой стратегии первого игрока пометим звездочками наилучшие ответы второго игрока.

3. Профили, которые оказались помечены как точками, так и звездочками, являются равновесиями Нэша.

Пример: игра “Битва полов”

Постановка игры. Муж и жена независимо друг от друга решают, куда пойти вечером: на футбол или на балет. Связь между ними отсутствует, поэтому никто из них не может ничего узнать о том, куда решил пойти другой. Предпочтения супругов таковы, что вечером они хотели бы оказаться в одном месте, но жене больше нравится балет, а мужу –– футбол. Мужу лучше оказаться вместе с женой на балете, чем одному на футболе. Жене лучше пойти на футбол с мужем, чем пойти одной на балет.

У каждого из супругов есть выбор из 2 стратегий: пойти на футбол (Ф) или пойти на балет (Б). Предпочтения супругов можно задать с помощью следующей матрицы платежей:

В ответ на разные стратегии жены, мужу выгодно играть разные стратегии. То же самое верно и для жены.

В нашей матрице платежей получились две клеточки, в которых лучший выбор мужа при фиксированной стратегии жены совпал с лучшим выбором жены при фиксированной стратегии мужа.

Профили стратегий (Ф, Ф) и (Б, Б) в каком-то смысле лучше профилей стратегий (Ф, Б) и (Б, Ф). Если муж и жена оказались вместе на футболе или на балете, то никому из супругов по отдельности не выгодно уйти в другое место при неизменном решении второго остаться. Если супруги оказались вечером в разных местах, то каждому из них выгодно отклониться от выбранной первоначально стратегии.

Таким образом, полученные нами профили стратегий (Ф, Ф) и (Б, Б) являются равновесиями Нэша.

5.3. Методы выбора альтернатив в условиях риска и неопределенности.
Критерии выбора решений

В ситуации неопределенности есть несколько возможных состояний, и разные альтернативы при них обеспечивают различный выигрыш. То есть у нас есть несколько альтернатив, каждая из которых представляет собой набор значений исходов при соответствующих состояниях природы. Эти наборы нельзя просто математически сравнить "целиком", используя понятия "больше-меньше". Такую операцию можно провести только с отдельными членами данных наборов.

Если среди альтернатив нет строго или слабо доминирующих, это означает, что при разных состояниях природы наилучший результат показывают разные альтернативы. Каким же образом можно сравнить между собой эти наборы значений, и как выбрать оптимальный? Здесь на помощь приходят так называемые критерии выбора или просто критерии.

Основная идея любого критерия: заменить целый набор значений одним численным показателем, характеризующим данный набор с определенной точки зрения, и затем просто численно сравнить между собой эти показатели. У какого набора этот численный показатель окажется "лучше" (больше или меньше - зависит от вида критерия и ситуации), тот и будет считаться оптимальным по данному критерию.

Идея простая, но эффективная. Однако существенным недостатком любого критерия является "потеря информации". Из-за "сжатия" целого набора значений в одно единственное число, становятся заметны одни свойства (черты) набора и не видны другие.

Это все равно, что про человека судить только по принципу (т.е. критерию) "плохой" или "хороший". Здесь все качества, черты характера, взгляды человека описываются одним словом. Это легко запомнить, но здесь нет подробной информации. Более того, может происходить ее искажение. Во-первых, не все качества плохого человека могут быть хуже, чем у хорошего (он может быть здоровее или даже умнее). Во-вторых, значение "плохой" или "хороший" соответствует взгляду конкретного субъекта или группы, которые оценили человека по своим субъективным. И, вполне возможно, у других людей существуют свои подходы к присвоению значения "плохой" или "хороший". Поэтому такая оценка не является точной и универсальной.

В общем случае порядок применения критерия выглядит следующим образом:

1) на первом этапе выбирается критерий, по которому будет производиться выбор;

2) для каждой альтернативы рассчитывается значение выбранного критерия. По сути, в соответствие каждой альтернативе ставится одно численное значение критерия (ее количественная оценка);

3) альтернативы сравниваются путем обычного численного сравнения соответствующих им значений критериев;

4) по результатам сравнения оптимальной признается альтернатива, имеющая наилучшее значение критерия. Что считать "наилучшим" - максимальное или минимальное значение критерия - зависит от того, что показывают исходы альтернатив (прибыль, выигрыш или убытки, расходы), и по какому критерию производится сравнение.

Рассмотрим шесть основных критериев, которые можно использовать при сравнении альтернатив в ситуации неопределенности:

· критерий Вальда;

· критерий "максимакса";

· критерий Лапласа;

· критерий Сэвиджа;

· критерий Гурвица;

· обобщенный критерий Гурвица.

Критерий Вальда является самым "осторожным". Согласно ему, оптимальной альтернативой будет та, которая обеспечивает наилучший исход среди всех возможных альтернатив при самом плохом стечении обстоятельств.

Если исходы отражают подлежащие минимизации показатели (убытки, расходы, потери и т.д.), то критерий Вальда ориентируется на "минимакс" (минимум среди максимальных значений потерь всех альтернатив).

Если в качестве исходов альтернатив фигурируют показатели прибыли, дохода и других показателей, которые надо максимизировать (по принципу "чем больше, тем лучше"), то ищется "максимин" выигрыша (максимум среди минимальных выигрышей). Здесь и далее для всех критериев в тексте мы будем рассматривать именно такой случай, когда исход показывает некий выигрыш.

По критерию Вальда оценкой i -й альтернативы является ее наименьший выигрыш:

W i = min(x ij ), j = 1..M

Оптимальной признается альтернатива с максимальным наихудшим выигрышем:

А* = А k , W k = max(W i ), i = 1..N

Пример применения критерия Вальда

Есть два проекта Х 1 и Х 2 , которые при трех возможных сценариях развития региона (j=1..3 ) обеспечивают разную прибыль. Значения прибыли приведены в таблице 2.2. Необходимо выбрать проект для реализации.

Таблица 3

Исходные данные

Если выбор оптимального проекта осуществляется по критерию Вальда, то ЛПР должен выполнить следующие действия:

1. Найти минимальные исходы для каждой альтернативы. Это и будут значения критерия Вальда:

W 1 = min(x 1j), j = 1..3 => W 1 = min(45, 25, 50) = 25

W 2 = min(x 2j), j = 1..3 => W 2 = min(20, 60, 25) = 20

2. Сравнить значения критерия Вальда и найти наибольшую величину. Альтернатива с максимальным значением критерия будет считаться оптимальной:

25 > 20 => W 1 > W 2 => X* = X 1

Если бы решение принималось только по критерию Вальда, ЛПР выбрал для реализации проект Х 1 , поскольку прибыль, которую обеспечит данный проект при самом плохом развитии ситуации, выше.

Выбрав оптимальную альтернативу по критерию Вальда, ЛПР гарантирует себе, что при самом плохом стечении обстоятельств он не получит меньше, чем значение критерия. Поэтому данный показатель еще называют критерием гарантированного результата .

Основной проблемой критерия Вальда является его излишняя пессимистичность, и, как следствие, не всегда логичный результат. Так, например, при выборе по данному критерию между альтернативами А{100; 500} и В{90; 1000} следует остановиться на варианте А . Однако в жизни логичнее было бы выбрать В , так как в худшем случае В лишь немного хуже А , тогда как при хорошем стечении обстоятельств В обеспечивает гораздо больший выигрыш.

Диаметральной противоположностью критерия Вальда является так называемый критерий "максимакса". Если Вальд отражал взгляд предельного пессимиста, то "максимакс" соответствует отношению крайнего оптимизма. Все внимание уделяется только наилучшим исходам, поэтому оценкой i -й альтернативы по данному критерию является ее наибольший выигрыш М i :

М i = mах(x ij ), j = 1..M

Оптимальной считается альтернатива с максимальным наибольшим выигрышем:

Х* = Х k , М k = max(М i ), i = 1..N

Пример применения критерия "максимакса"

В условиях примера из табл. 3 действия ЛПР, использующего критерий "максимакса" для принятия решения, будут следующие:

1. Найти максимальные исходы для каждой альтернативы:

М 1 = max(x 1j), j = 1..3 => М 1 = max(45, 25, 50) = 50

М 2 = max(x 2j), j = 1..3 => М 2 = max(20, 60, 25) = 60

2. Сравнить найденные значения и определить альтернативу с максимальной величиной критерия:

50 < 60 => М 1 < М 2 => X* = X 2

По критерию "максимакса" оптимальным является проект Х 2 ., который может обеспечить наибольшую прибыль при наилучшем стечении обстоятельств.

Критерий "максимакса" не учитывает никакие иные исходы, кроме самых лучших. Поэтому его применение, во-первых, может быть весьма опасным, и, во-вторых, также как и критерий Вальда он может приводить к нелогичным решениям. Например, среди альтернатив А{-100; 0; 500} и В{200; 300; 400} с позиции "максимакса" лучшей является А , однако она несет в себе и опасность убытков (-100 ), и вообще все исходы, кроме лучшего намного уступают В . Поэтому практическое применение критерия "максимакса" весьма ограничено.

Критерий Лапласа основан на принципе недостаточного обоснования . Поскольку в рамках информационного подхода в ситуации неопределенности вероятности состояний неизвестны, то нет оснований утверждать, что они различны. Поэтому можно допустить, что они одинаковы.

По критерию Лапласа в качестве оценки альтернативы используется средний выигрыш:

Оптимальной является альтернатива с максимальным средним выигрышем:

Х* = Х k , L k = max(L i ), i = 1..N

Пример применения критерия Лапласа

Для условий примера из табл. 3 использование критерия Лапласа будет выглядеть следующим образом:

1. Найти среднее арифметическое значение исходов по каждому проекту. Оно является оценкой альтернативы по критерию Лапласа:

L 1 = (x 11 +x 12 +x 13)/3 = (45+25+50)/3 = 40

L 2 = (x 21 +x 22 +x 23)/3 = (20+60+25)/3 = 35

2. Сравнить рассчитанные величины и найти альтернативу с максимальным значением критерия:

40 > 35 => L 1 > L 2 => X* = X 1

По критерию Лапласа оптимальным является проект Х 1 , у которого наибольшая средняя прибыль.

Среднее значение является достаточно популярной мерой в условиях неопределенности и даже риска, однако оно не учитывает разброс результатов относительно этого значения. Так, например, альтернативы А{400; 600} и В{0; 1000} являются эквивалентными по критерию Лапласа (L A = L B = 500 ) , однако альтернатива В более "рискованна", так как предполагает возможность при плохом стечении обстоятельств не получить ничего.

Критерий Сэвиджа несколько отличается от всех остальных. Оценка альтернатив производится не по исходной матрице, а по так называемой "матрице сожалений" или, как ее еще называют в некоторых источниках, "матрице рисков" .

Для произвольной альтернативы и конкретного состояния природы величина "сожаления" равна разнице между тем, что обеспечивает данная альтернатива, и тем, сколько максимально можно выиграть при данном состоянии. С экономической точки зрения величину "сожаления" можно трактовать как недополученный выигрыш (или упущенную выгоду) по сравнению с максимально возможным при данном состоянии природы.

Рассмотрим, каким образом следует выбирать наилучшую альтернативу, руководствуясь критерием Сэвиджа.

1. ОБЩАЯ МЕТОДИКА ФОРМИРОВАНИЯ КРИТЕРИЕВ

Суть предлагаемой методики формирования критериев заключается в реализации следующих пунктов.

1) Из выигрышей аij, i=1,…,m; j=1,…,n, игрока А составляем матрицу А, предполагая, что она удовлетворяет указанным выше условиям: m³2, n³2 и она не содержит доминируемых (в частности, дублируемых) строк.

Выигрыши аij игрока А, представленные в виде матрицы А, дают возможность лучшего обозрения результатов выбора стратегий Аi, i=1,…,m, игроком А при каждом состоянии природы Пj, j=1,…,n.

2) Фиксируем распределение удовлетворяющих условию (1) вероятностей qj=p(Пj), j=1,…,n, состояний природы Пj, j=1,…n, разумеется, если они известны. Таким образом, пункт 2 участвует в методике формирования критерия в случае принятия решения в условиях риска.

3) На основании пунктов 1 и 2 выбираем натуральное число l, 1£l£n, и определенным образом строим матрицу


Назовем их коэффициентами формируемого критерия. Они призваны играть роль количественных оценок некоторых субъективных проявлений игрока А (лица, принимающего решение), а именно степени доверия к распределению вероятностей состояний природы и степени его пессимизма (оптимизма) при принятии решений.

5) Используя матрицу В и коэффициенты l1,…, ll, каждой стратегии Аi, i=1,…,m, игрока А поставим в соответствие число


7) Определим оптимальную стратегию.

Оптимальной стратегией назовем стратегию Аk с максимальным показателем эффективности, другими словами, - стратегию, показатель эффективности Gk которой совпадает с ценой игры G:


Понятно, что такое определение оптимальной стратегии не влечет ее единственности.

Отметим, что по логике этого пункта игрок А, выбирая оптимальную стратегию, максимизирует показатель Gi (см. (5)). Это обстоятельство оправдывает то, что этот показатель мы назвали (в пункте 5) показателем эффективности.

2. ФОРМИРОВАНИЕ НЕКОТОРЫХ ИЗВЕСТНЫХ КРИТЕРИЕВ-ЧАСТНЫЕ СЛУЧАИ ОБЩЕЙ МЕТОДИКИ

Критерий Байеса (, , , ).

1) Пусть А является матрицей выигрышей игрока А.

2) Известны вероятности qj=p(Пj), j=1,…,n, состояний природы Пj, j=1,…,n, удовлетворяющие условию (1). Следовательно, речь идет о принятии решения в условиях риска.

3) Полагаем l=n и матрицу В выбираем равной матрице А, т.е.

bij=aij для всех i=1,…,m и j=1,…,n.

4) Коэффициенты l1,…,ln, выбираем равными соответствующим вероятностям q1,…,qn, т.е. ll=qi, i=1,…,n. Этим самым игрок А выражает полное доверие к истинности распределения вероятностей q1,…,qn, состояний природы.

Из (1) следует, что коэффициенты lj, j=1,…,n удовлетворяют условию (3).

5) Показатель эффективности стратегии Аi по критерию Байеса обозначим через Вi и находим его по формуле (3):


Очевидно, что Вi – средневзвешенный выигрыш при стратегии Аi с весами q1,…,qn.

Если стратегию Аi трактовать как дискретную случайную величину, принимающую значения выигрышей при каждом состоянии природы, то вероятности этих выигрышей будут равны вероятностям состояний природы и тогда Вi есть математическое ожидание этой случайной величины (см. (6)).

6) Цена игры по критерию Байеса, обозначаемая нами через В, определяется по формуле (4):

7) Оптимальной среди чистых стратегий по критерию Байеса является стратегия Аk, для которой показатель эффективности максимален:

Критерий Лапласа (, , , ).

2) Исходя из теоретических, либо из практических соображений, констатируется, что ни одному из возможных состояний природы Пj, j=1,…,n, нельзя отдать предпочтения. Потому все состояния природы считают равновероятностными, т.е. qj=n-1, j=1,…,n. Этот принцип называют принципом «недостаточного основания» Лапласа. Вероятности qj=n-1, j=1,…,n, удовлетворяют условию (1).

Поскольку вероятности состояний природы известны: qj=n-1, j=1,…,n, то мы находимся в ситуации принятия решения в условиях риска.

3) Пусть l=n, а в качестве матрицы В можно взять матрицу, получающуюся из матрицы А, если каждую строку последней заменить на произвольную перестановку ее элементов. В частности, можем положить В=А. В общем же случае элементы матрицы В имеют вид bij=aikj(i), i=1,…, m; j=1,…,n, где aik1(i), aik2(i),…,aikn(i) – некоторая перестановка элементов ai1, ai2,…,ain i-й строки матрицы А.

4) Пусть коэффициенты lj=n-1, j=1,…,n. Очевидно, они удовлетворяют условию (2).

Выбор коэффициентов lj, j=1,…,n, таким образом подтверждает полное доверие игрока А к принципу недостаточного основания Лапласа.

5) По формуле (3) показатель эффективности стратегии Аi по критерию Лапласа, обозначаемый нами через Li, равен:


7) Оптимальной стратегией Аk по критерию Лапласа является стратегия с максимальным показателем эффективности:

Заметим, что, как следует из (7) и (8), показатель эффективности Li будет максимальным тогда и только тогда, когда максимальной будет сумма , и потому в качестве показателя эффективности стратегии Аi можно рассмотреть число , а в качестве цены игры – число .

Тогда оптимальной будет стратегия, сумма выигрышей при которой максимальна.

Критерий Вальда ( – ).

1) Предположим, что А – матрица выигрышей игрока А.

2) Вероятности состояний природы неизвестны и нет возможности получить о них какую-либо статистическую информацию. Поэтому игрок А находится в ситуации принятия решения в условиях неопределенности.

3) Пусть l=1 и


4) Пусть коэффициент l1=1. Очевидно, условие (2) выполняется.

5) Обозначим показатель эффективности стратегии Аi по критерию Вальда через Wi. В силу (9) и значения коэффициента l1=1, по формуле (3) имеем:


Таким образом, показатель эффективности стратегии Аi по критерию Вальда есть минимальный выигрыш игрока А при применении им этой стратегии.

6) Цена игры по критерию Вальда, обозначим ее через W, находится по формуле (4):

7) Оптимальной среди чистых стратегий по критерию Вальда является стратегия Аk с максимальным показателем эффективности:

Другими словами, оптимальной среди чистых стратегий по критерию Вальда считается та чистая стратегия, при которой минимальный выигрыш является максимальным среди минимальных выигрышей всех чистых стратегий. Таким образом, оптимальная стратегия по критерию Вальда гарантирует при любых состояниях природы выигрыш, не меньший максимина:


В силу (10), критерий Вальда является критерием крайнего пессимизма игрока А, а количественным выражением этого крайнего пессимизма является значение коэффициента l1, равное 1. Игрок А, принимая решение, действует по принципу наибольшей осторожности.

Хотя арабская пословица и гласит: «Кто боится собственной тени, тому нет места под солнцем», - тем не менее этот критерий уместен в тех случаях, когда игрок А не столько хочет выиграть, сколько не хочет проиграть. Использование принципа Вальда в обиходе подтверждается такими поговорками как «Семь раз отмерь – один раз отрежь», «Береженого Бог бережет», «Лучше синица в руках, чем журавль в небе».

Критерий Ходжа-Лемана .

1) Предположим, что матрицей выигрышей игрока А является матрица А.

2) Известны вероятности qi=p(Пj), j=1,…,n, состояний природы Пj, j=1,…,n, удовлетворяющие условию (1).

Таким образом, игроку А надлежит принимать решение в условиях риска.

3) Пусть l=2,


· показатель эффективности стратегии Аi по критерию Байеса.

Матрица В примет вид


Очевидно, что эти коэффициенты удовлетворяют условию (2).

5) По формуле (3), с учетом (11), (12), и (13), показатель эффективности стратегии Аi по критерию Ходжа-Лемана равен:

Gi=libi1+l2bi2=(1-l)Wi+lBi=(1-l)aij+ i=1,…,m.

В правой части формулы (14) коэффициент lÎ есть количественный показатель степени доверия игрока А данному распределению вероятностей qi=p(Пj), j=1,…,n, состояний природы Пj, j=1,…,n, а коэффициент (1-l) характеризует количественно степень пессимизма игрока А. Чем больше доверия игрока А данному распределению вероятностей состояний природы, тем меньше пессимизма и наоборот.

6) Цену игры по критерию Ходжа-Лемана находим по формуле (4):

7) Оптимальной стратегией по критерию Ходжа-Лемана является стратегия Аk с наибольшим показателем эффективности:

Отметим, что критерий Ходжа-Лемана является как-бы промежуточным критерием между критериями Байеса и Вальда. При l=1, из (14) имеем:Gi=Bi и потому критерий Ходжа-Лемана превращается в критерий Байеса. А при l=0, из (14): Gi=Wi и, следовательно, из критерия Ходжа-Лемана получаем критерий Вальда.

Критерий Гермейера .

1) Пусть матрица А является матрицей выигрышей игрока А.

2) Даны вероятности qi=p(Пj), j=1,…,n, состояний природы Пj, j=1,…,n, удовлетворяющие условию (1).

Т.о. игрок А находится в ситуации принятия решений в условиях риска

размера m x 1.

4) Полагаем l1=1. Условие (2), очевидно, выполняется.

5) Показатель эффективности стратегии Аi по критерию Гермейера определяем по формуле (3) с учетом (15) и того, что l1=1:


Если игрок А придерживается стратегии Аi, то вероятность выигрыша aij при этой стратегии и при состоянии природы Пj равна, очевидно, вероятности qj этого состояния природы. Поэтому формула (16) показывает, что показатель эффективности стратегии Аi по критерию Гермейера есть минимальный выигрыш при этой стратегии с учетом его вероятности.

6) Цена игры по критерию Гермейера определяется по формуле (4):

7) Оптимальной стратегией по критерию Гермейера считается стратегия Аk с наибольшим показателем эффективности:

Заметим, что критерий Гермейера можно интерпретировать как критерий Вальда, применимый к игре с матрицей


Критерий Гермейера так же, как и критерий Вальда является критерием крайнего пессимизма игрока А, но, в отличие от критерия Вальда, игрок А, принимая решение с максимальной осмотрительностью, учитывает вероятности состояний природы.

В случае равномерного распределения вероятностей состояний природы: qj=n-1, j=1,…,n, показатель эффективности стратегии Аi, в силу формулы (16), будет равен Gi=n-1aij и, следовательно, критерий Гермейера эквивалентен критерию Вальда, т.е. стратегия, оптимальная по критерию Гермейера, оптимальна и по критерию Вальда, и наоборот.

Критерий произведений .

1) Пусть матрицей выигрышей игрока А является матрица А, все элементы которой положительны:

aij>0, i=1,…,m; j=1,…,n.

2) Известны вероятности qj=p(Пj), j=1,…,n, состояний природы Пj, j=1,…,n, и удовлетворяют условию (1).

3) Пусть l=1 и


размера m x 1.

4) Пусть l1=1. Условие (2) выполняется.

5) Показатель эффективности стратегии Аi по критерию произведений в соответствии с формулами (3) и (17) равен

.

6) Цена игры по критерию произведений вычисляется по формуле (4):

7) Оптимальной стратегией по критерию произведений является стратегия Аk с наибольшим показателем эффективности:

Отметим, что для критерия произведений является существенным положительность всех состояний вероятностей состояний природы и всех выигрышей игрока А.

Максимаксный критерий (.-).

2) Вероятность состояний неизвестны. Решение принимается в условиях неопределенности.

3) Пусть l=1 и


размера m x 1.

4) Коэффициент l1 выбираем равным 1: l1=1. При этом условие (2), очевидно, выполняется.

5) Показатель эффективности стратегии Аi по максимаксному критерию обозначим через Мi и определим его по формуле (3) с учетом (18) и того, чтоl1=1:


Таким образом, показатель эффективности стратегии Аi по максимаксному критерию есть наибольший выигрыш при этой стратегии.

6) Цена игры по максимаксному критерию, обозначаемая нами через М, определяется по формуле (4):


Очевидно, что это есть наибольший элемент матрицы А.

7) Оптимальная стратегия по максимаксному критерию есть стратегия Аk с наибольшим показателем эффективности:

Из формулы (19) заключаем, что максимаксный критерий является критерием крайнего оптимизма игрока А. Количественно это выражается тем, что l1=1. Этот критерий противоположен критерию Вальда. Игрок А, пользуясь максимаксным критерием, предполагает, что природа П будет находиться в благоприятнейшем для него состоянии, и, как следствие отсюда, ведет себя весьма легкомысленно, с «шапкозакидательским» настроением, поскольку уверен в наибольшем выигрыше. Вместе с тем, в некоторых случаях этим критерием пользуются осознанно, например, когда перед игроком А стоит дилемма: либо получить наибольший выигрыш, либо стать банкротом. Бытовое отражение подобных ситуаций иллюстрируется поговорками: «Пан или пропал», «Кто не рискует, тот не выигрывает» и т.п.

Оптимальная стратегия по максимальному критерию гарантирует игроку А возможность выигрыша, равного максимаксу.

.

Критерий пессимизма-оптимизма Гурвица с показателем оптимизма lÎ ( – ).

1) Пусть А – матрица выигрышей игрока А.

2) Вероятности состояний природы неизвестны и нет возможности получить о них какую–либо надежную статистическую информацию.

Таким образом, решение о выборе оптимальной стратегии будет приниматься в условиях неопределенности.

3) Положим l=2. Элементы матрицы В


4) Коэффициенты l1 и l2 выбираем следующим образом:


В формуле (22) l - показатель оптимизма, а (1-l) – показатель пессимизма игрока А при выборе им оптимальной стратегии. Чем ближе к единице показатель оптимизма, тем ближе к нулю показатель пессимизма, и тем больше оптимизма и меньше пессимизма. И наоборот. Если l=0,5, то и 1-l=0,5, т.е. показатели оптимизма и пессимизма одинаковы. Это означает, что игрок А при выборе стратегии ведет себя нейтрально.

Таким образом, число l выбирается в пределах от 0 до 1 в зависимости от склонности игрока А к оптимизму или пессимизму.

6) Цена игры по критерию Гурвица Н определяется из формулы (5):


7) Оптимальная стратегия Аk по критерию Гурвица соответствует показателю эффективности

Критерий Гурвица является промежуточным между критерием Вальда и максимаксным критерием и превращается в критерий Вальда при l=0 и - в максимаксный критерий при l=1.

Обобщенный критерий Гурвица с коэффициентами l1,…, ln (, ).

1) Пусть А – матрица выигрышей игрока А.

2) Вероятности состояний природы неизвестны. Так что решение принимается в условиях неопределенности.

3) Матрица В получается из матрицы А перестановкой элементов каждой ее строки в неубывающем порядке:

bi1£bi2£…£bin, i=1,…,m.

Таким образом, в 1-м столбце матрицы В стоят минимальные, а в n-м столбце максимальные выигрыши стратегий. Другими словами, в 1-м столбце матрицы В стоят показатели эффективности стратегий по критерию Вальда, а в n-м столбце – показатели эффективности стратегий по максимаксному критерию.

4) Коэффициенты l1,…, ln выбираются удовлетворяющими условиям (2) соответственно различной степени склонности игрока А к оптимизму. При этом показателем пессимизма игрока А называется число


где целая часть числа , а показателем оптимизма игрока А называется число


Очевидно, что lр+l0=1.

5) Показатель эффективности стратегии Аi по обобщенному критерию Гурвица определяется по формуле (3):


6) Цену игры по обобщенному критерию Гурвица определим по формуле (4):

7) Оптимальные стратегии находятся стандартно: Аk – оптимальная стратегия, если Gk=G.

Отметим, что обобщенный критерий Гурвица учитывает все выигрыши при каждой стратегии, что необходимо для более полной картины эффективности стратегий. Отметим также, что некоторые из приведенных выше критериев являются частными случаями обобщенного критерия Гурвица.

Отметим, что если В=А, то коэффициенты lj, j=1,…,n, можно формально интерпретировать как вероятности состояний природы и в, таком случае, обобщенный критерий Гурвица совпадает с критерием Байеса.

Если lj=n-1, j=1,…,n, то обобщенный критерий Гурвица превращается в критерий Лапласа.

Если l1=1, l2=…=ln=0, то обобщенный критерий Гурвица представляет собой критерий Вальда.

При l1=…=ln-1=0, ln=1, из обобщенного критерия Гурвица получаем максимаксный критерий.

Если l1=1-l, l2=…=ln-1=0, ln=l, где lÎ, то обобщенный критерий Гурвица является критерием Гурвица.

Если В=А и qi=p(Пj), j=1,…,n – вероятности состояний природы, удовлетворяющие условиям (1), то выбрав коэффициенты lj, j=1,…,n, следующим образом: l1=1-l+lq1, lj=lqj, j=2,…,n, где lÎ, мы из обобщенного критерия Гурвица получим критерий Ходжа Лемана.

3. ЗАДАЧА В УСЛОВИЯХ ПОЛНОЙ НЕОПРЕДЕЛЁННОСТИ

Допустим, инвестор принимает решение о строительстве жилья определенного типа в некотором месте. Инвестор действует в условиях неопределенности (информационной непрозрачности) на рынке жилья. Чтобы сформировать представление о ситуации на рынке жилья на момент завершения строительства ему необходимо учесть цены на недвижимость, конкуренцию на рынке жилья, соотношение предложения и спроса, курсы валют и многое другое. Статистические данные свидетельствуют о том, что одной из главных составляющих стоимости жилья является место его расположения.

Рассмотрим математическую модель данной ситуации. Мы имеем игру с природой, где игрок А – инвестор, природа П – совокупность возможных ситуаций на рынке жилья на момент завершения строительства, из которых можно сформировать, например, пять состояний П1, П2, П3, П4, П5 природы. Известны приближенные вероятности этих состояний q1=p(П1)»0,30; q2=p(П2)»0,20; q3=p(П3)»0,15; q4=p(П4)»0,10; q5=p(П5)»0,25. Предположим, что игрок А располагает четырьмя (чистыми) стратегиями А1, А2, А3, А4, представляющими собой выбор определенного места для постройки жилья. Множество этих мест ограничено градостроительными решениями, стоимостью земли и т.д. Инвестиционная привлекательность проекта определяется как процент прироста дохода по отношению к сумме капитальных вложений, оценка которых известна при каждой стратегии и каждом состоянии природы. Эти данные представлены в следующей матрице выигрышей игрока А:


размера 4 х 5, в последней, дополнительной строке которой указаны вероятности состояний природы. Матрица (24) не содержит доминируемых (в частности, дублируемых) строк и все ее элементы положительны.

Инвестору предстоит выбрать участок земли так, чтобы наиболее эффективно использовать капиталовложения.

Подсчитаем показатели эффективности стратегий

· по критериям Байеса, Гермейера и критерию произведений при условии, что инвестор А доверяет данному распределению вероятностей состояний природы,

· по критерию Лапласа, если инвестор А не доверяет данному распределению вероятностей состояний природы и не может отдать предпочтения ни одному из рассматриваемых состояний природы,

· по критерию Ходжа- Лемана с коэффициентом доверия к вероятностям состояний природы, например, l=0,4,

· по критерию Вальда, максимаксному критерию, критерию пессимизма-оптимизма Гурвица с показателем оптимизма, например, l=0,6, и по обобщенному критерию Гурвица с коэффициентами, например, l1=0,35; l2=0,24; l3=0,19; l4=0,13; l5=0,09.

Результаты подсчета показателей эффективности и оптимальные стратегии представлены в следующей таблице:

Таблица показателей эффективности и оптимальных стратегий

Стратегии

Критерии

Ходжа-Лемана

Гермейгера

Произ-ведений

Макси-максный

Обобщенный Гурвица с коэффиц

l1=0,35
l2=0,24
l3=0,19
l4=0,13
l5=0,09

Оптимал. стратегии


Заметим, что, поскольку, в критерии Ходжа- Лемана показатель доверия игрока А распределению вероятностей состояний, указанных в последней строке матрицы (24), равен l=0,4, то показатель пессимизма игрока А равен 1-l=0,6.

В критерии Гурвица показатель оптимизма игрока А равен l=0,4 и, следовательно, показатель его пессимизма также равен 1-l=0,6.

В обобщенном критерии Гурвица по формуле (23) показатель пессимизма

= 0,35+0,24+0,5×0,19=0,685

и, следовательно, показатель оптимизма l0=1-0,685=0,315.

Таким образом, во всех примененных критериях, учитывающих индивидуальные проявления игрока А к пессимизму и оптимизму, игрок А более склонен к пессимистической оценке ситуации, чем к оптимистической, примерно с одинаковыми показателями.

В результате применения девяти критериев мы видим, что в качестве оптимальной стратегии А1 выступает 3 раза, стратегия А3 – 6 раз и стратегия А4 – 1 раз. Поэтому, если у инвестора А нет никаких обоснованных серьезных возражений, то в качестве оптимальной можно рассматривать стратегию А3.

Условия задачи по выбору ценовой стратегии в условиях неопределенности и риска

Компания Central Ltd. разработала новый продукт Х и в настоящее время принимает решение, какую цену назначить: высокую - 24$ или низкую – 15$. Отдел маркетинга предоставил следующую информацию о возможном объеме реализации продукта Х при двух указанных ценах.

Таблица 1

Возможный объем реализации продукта Х при двух указанных ценах

Бухгалтерия и ПЭО предоставили следующие данные о затратах на производство нового продукта.

Таблица 2

Данные о затратах на производство нового продукта

Приведенные цены станут действующими только тогда, когда Central Ltd. заранее даст гарантии, что буде покупать материал Y в одном из указанных объемов.



Если Central Ltd. согласилась бы на такие условия контракта по поставке материала Y, но затем выяснила бы, что не может использовать весь закупленный материал в своих целях, то имеется возможность излишки перепродать своему партнеру на следующих условиях:

Таблица 4

Условия перепродажи материала

Независимо от объема затраты на перепродажу в расчете на 1кг. материала Y составят:

Таблица 5

Затраты на перепродажу в расчете на 1кг. материала Y

Упаковка 0,30$
Доставка 0,45$
Страхование 0,15$

Менеджеры компании Central Ltd. полагают, что нести убытки на материале нежелательно, а наоборот, хотели бы на этой сделке хорошо заработать. Поэтому решили разработать собственный критерий, который будет примяться для измерения степени обоснованности сделки, а именно:

К = L + 3E, где

К – критерий обоснованности; чем выше значение К, тем привлекательнее стратегия.

Е – ожидаемое значение в денежном выражении (тыс. $) используемой стратегии;

L – самый низкий (MIN) результат (прибыль/убыток) используемой стратегии.

Под стратегией понимают комбинацию цены реализации нового продукта Х (15$ или 24$) и условия контракта на поставку материала Y.

Задание. Вы - менеджер по маркетингу. Руководство предприятия интересуют ваши рекомендации, которые помогли бы ему выбрать наиболее подходящую стратегию. Для этого надо принять два экономически обоснованных решения:

1) какую цену установить для нового продукта Х – 15$ или 24$?

2) заключать контракт с поставщиками материала Y на выше указанных условиях Y или нет? Если заключать контакт, то на каком варианте объема поставки материала Y целесообразно остановиться?

Методические указания. Целесообразно построить дерево решений и оценить каждую альтернативу, используя критерий ожидаемого значения и/или ожидаемого значения + дисперсия. Далее необходимо дать рекомендации по выбору стратегии, учитывая следующие цели компании Central Ltd.:

Получить максимальное ожидаемое значение прибыли;

Минимизировать убытки, которая понесет компания Central Ltd., если при каждой выбранной стратегии результат окажется худшим из всех возможных;

Получить максимально высокий показатель обоснованности К, который рассчитывается по формуле К = L + 3E.

Практическое решение выбора ценовой стратегии в условиях неопределенности и риска

Рассчитаем выручку и затраты предприятия при реализации по цене 15 долл.

Таблица 6

Выручка и затраты предприятия при реализации по цене 15 долл

Таблица 7

Таблица 8

Таблица 9

Рассчитаем выручку и затраты предприятия при реализации по цене 24 долл.

Таблица 10

Выручка и затраты предприятия при реализации по цене 24 долл

Таблица 11

Альтернатива 1. Покупать материалы по 4 долл

Таблица 12

Альтернатива 2. Заключить контракт (не менее 40000)

Таблица 13

Альтернатива 3. Заключить контракт (не менее 60000)

Таблица 14

Сравнительный анализ альтернатив

Найдем критерий ожидаемого значения:

Таблица 15

Критерий ожидаемого значения

Таким образом, при любом варианте компания понесет убытки. Наименьшие убытки будут в случае реализации по цене 24 долл. И при закупке материалов по 40000 кг.


Заключение

Управленческое решение – это результат анализа, оптимизации, экономического обоснования и выбора альтернатив из множества вариантов достижения конкретной цели. Импульсом управленческого решения является необходимость ликвидации, уменьшения актуальности или решения проблемы, то есть приближение в будущем действительных параметров объекта к желаемым.

Риск – это возможная опасность потерь, вытекающая из специфики тех или иных явлений природы и видов деятельности человеческого общества. Это историческая и экономическая категория. Таким образом, принятие решений в условиях риска означает выбор варианта решения в условиях, когда каждое действие приводит к одному из множества возможных частных исходов, причем каждый исход имеет вычисляемую или экспертно определяемую вероятность появления.

Под классификацией рисков следует понимать распределение риска на конкретные группы по определенным признакам для достижения поставленных целей. Научно обоснованная классификация рисков позволяет четко определить место каждого риска в их общей системе. Она создает возможности для эффективного применения соответствующих методов, приемов управления риском, так как каждому риску соответствует своя система приемов управления риском.

Неопределенность – это свойство объекта, выражающееся в его неотчетливости, неясности, необоснованности, приводящее к недостаточной возможности для лица, принимающего решение, осознания, понимания, определения его настоящего и будущего состояния.

Источниками неопределенности ожидаемых условий в развитии предприятия могут служить поведение конкурентов, персонала организации, технические и технологические процессы и изменения конъюнктурного характера. При этом условия могут подразделяться на социально-политические, административно-законодательные, производственные, коммерческие, финансовые. Таким образом, условиями, создающими неопределенность, являются воздействия факторов внешней к внутренней среды организации. Решение принимается в условиях неопределенности, когда невозможно оценить вероятность потенциальных результатов. Это должно иметь место, когда требующие учета факторы настолько новы и сложны, что насчет них невозможно получить достаточно релевантной информации. В итоге вероятность определенного последствия невозможно предсказать с достаточной степенью достоверности. Неопределенность характерна для некоторых решений, которые приходится принимать в быстро меняющихся обстоятельствах.

В ситуации риска можно, используя теорию вероятности, рассчитать вероятность того или иного изменения среды, в ситуации неопределенности значения вероятности получить нельзя.

Неопределенность проявляется в невозможности определения вероятности наступления различных состояний внешней среды из-за их неограниченного количества и отсутствия способов оценки.


Список использованной литературы

1. Акулов, В.Б., Рудаков М.Н. Теория организации. Петрозаводск: ПетрТУ. 2014.

2. Ансофф, И. Планирование в больших экономических системах. М.: ИНФРА. 2013.

3. Балаева, О.Н. Разработка управленческих решений. М.: Юнити-Дана, 2015.

4. Бусыгин, А.В. Эффективный менеджмент: Курс лекций. Выпуск 3. М.: Эльф К. 2014.

5. Виханский, О.С., Наумов А.И. Стратегическое управление. М.:Гардарики. 2012.

6. Волкова, У.И. Экономика предприятия: учебник / под ред. У.И. Волкова. М.: ИНФРА-М. 2013.

7. Воробьев, С.Н. Управленческие решения: Учебник для вузов/ С.Н. Воробьев, В.Б. Уткин, К.В, Балдин. - М.: ЮНИТИ-ДАНА, 2008.

8. Гапоненко, Т.В. Управленческие решения: учебное пособие / Т.В. Гапоненко. – Ростов н/Д: Феникс, 2012.

9. Герчикова И. Содержание и стадии процесса выработки и принятия управленческого решения // Экономист, 2014.

10. Голубков Е.П. Какое принять решение? // Менеджмент в России и за рубежом. - 2015, №4.

11. Голубков, Е.П. Сущность и характерные особенности управленческих решений // Менеджмент в России и за рубежом. 2014. №8.

12. Гроув, С.Э. Высоко эффективный менеджмент. М.: Экономикс. 2014.

13. Давенков, А.С. Управленческие решения / А.С. Давенков. – М.: Дело, 2012.

14. Евланов, Л.Г. Теория и практика разработки и принятия решений // Менеджмент, 2014.

15. Карданская, Н.Л. Основы принятия управленческих решений / Н.Л. Карданская. – М.: РДЛ, 2009.

16. Кинг, У., Клиланд Д. Стратегическое планирование и хозяйственная политика. М.: Прогресс, 2014.

17. Коллинз, Г., Блэй Дж. Структурные методы разработки систем: от стратегического планирования до тестирования. // Финансы и статистика. 2012

18. Критерии выбора эффективных решений / под ред. Рой О.М. 2014.

19. Лафта, Д. Управленческие решения / Д. Лафта. – МЦЭиМ, 2013.

20. Проблемы планирования и управления: опыт системных исследований / Под ред. Е.П. Голубкова и А.М. Жандарова. М.: Экономика. 2014.

21. Чудновская, С.Н. Разработка управленческих решений / С.Н. Чудновская. – Тюмень: ТГУ, 2012.

Пример. Фирма готова перейти к массовому выпуску нового вида продукции, но не знает, когда лучше это сделать: немедленно, через 1 год или даже через 2 года. Дело в том, что новая продукция в силу своей дороговизны, очевидно, не сразу найдет массового покупателя. Поэтому излишняя торопливость может привести к тому, что оборотные средства фирмы окажутся надолго иммобилизованными в осевшей на складах готовой продукции, а это грозит убытками. Но медлить тоже нельзя: конкуренты перехватят инициативу, и значительная часть ожидаемой прибыли будет упущена. Фирма не смогла даже приблизительно оценить вероятности для разных сроков появления массового спроса. Поэтому налицо ситуация неопределенности.

Возможные последствия от принимаемых решений в условиях разной реакции рынка на новую продукцию представлены ниже в табл. 10.10.

Таблица 10.10

Как видно из таблицы, немедленный переход к массовому выпуску нового вида продукции может дать наибольшую прибыль, но в случае неудачи грозит большими убытками. Другие варианты выбора срока перехода к массовому производству данного вида продукции исключают возможность возникновения убытков, но дают относительно меньшую прибыль.

Выбор оптимального решения здесь затруднен отсутствием сведений о вероятностях той или иной реакции рынка.

Для выбора оптимальной стратегии в ситуации неопределенности используются следующие критерии:

Критерий MAXIMAX определяет альтернативу, максимизирующую максимальный результат для каждого состояния возможной действительности. Это критерий крайнего оптимизма. Наилучшим признается решение, при котором достигается максимальный выигрыш, равный

Запись вида m f x означает поиск максимума перебором столбцов, а запись вида т ^ х - поиск максимума перебором строк в матрице выплат.

Нетрудно увидеть, что для нашего примера наилучшим решением будет размер выплат в 16 млн у.с., т.с. немедленный переход к новому выпуску продукции.

Следует заметить, что ситуации, требующие применения такого критерия, в общем, нередки и пользуются им нс только безоглядные оптимисты, но и игроки, вынужденные руководствоваться принципом «или пан или пропал».

Максиминный критерий Вальда еще называют критерием пессимиста, поскольку при его использовании как бы предполагается, что от любого решения надо ожидать самых худших последствий и, следовательно, нужно найти такой вариант, при котором худший результат будет относительно лучше других худших результатов. Таким образом, он ориентируется на лучший из худших результатов .

Расчет максимина в соответствии с приведенной выше формулой состоит из двух шагов.

Находим худший результат каждого варианта решения, т.е. величину min Ху (табл. 10.11).

Расчет максимина (первый шаг)

Из худших результатов, представленных в столбце минимумов, выбираем лучший. Он стоит на второй строке таблицы выплат, что предписывает приступить к массовому выпуску новой продукции через год.

Это перестраховочная позиция крайнего пессимиста. Такая стратегия приемлема, когда инвестор не столь заинтересован в крупной удаче, но хочет застраховать себя от неожиданных проигрышей. Выбор такой стратегии определяется отношением принимающего решения лица к риску.

Критерий MINIMAX, или критерий Сэвиджа, в отличие от предыдущего критерия ориентирован нс столько на минимизацию потерь, сколько на минимизацию сожалений по поводу упущенной прибыли. Он допускает разумный риск ради получения дополнительной прибыли. Пользоваться этим критерием для выбора стратегии поведения в ситуации неопределенности можно лишь тогда, когда есть уверенность в том, что случайный убыток нс приведет фирму (проект) к полному краху.

Расчет данного критерия включает в себя четыре шага.

  • 1. Находим лучшие результаты каждого в отдельности столбца, т.с. шах Ху. Таковыми в нашем примере будут для первого столбца 16, для второго - 12 и третьего - 5. Это тс максимумы, которые можно было бы получить, если бы удалось точно угадать возможные реакции рынка.
  • 2. Определяем отклонения от лучших результатов в пределах каждого отдельного столбца, т.е. шах Ху - Ху. Получаем матрицу отклонений, которую можно назвать матрицей сожалений, ибо ее элементы - это недополученная прибыль от неудачно принятых решений из-за ошибочной оценки возможной реакции рынка. Матрицу сожалений можно оформить в виде табл. 10.12.

Матрица сожалений

Судя по приведенной матрице, не придется ни о чем жалеть, если фирма немедленно перейдет к массовому выпуску новой продукции и рынок сразу же отреагирует на это массовым спросом. Однако если массовый спрос возникнет только через 2 года, то придется пожалеть о потерянных вследствие такой поспешности 12 млн у.с.

3. Для каждого варианта решения, т.с. для каждой строки матрицы сожалений, находим наибольшую величину. Получаем столбец максимумов сожалений в виде табл. 10.13.

Таблица 10.13

Максимальные сожаления

4. Выбираем то решение, при котором максимальное сожаление будет меньше других. В приведенном столбце максимальных сожалений оно стоит на второй строке, что предписывает перейти к массовому выпуску через год.

Критерий пессимизма-оптимизма Гурвица при выборе решения рекомендует руководствоваться некоторым средним результатом, характеризующим состояние между крайним пессимизмом и безудержным оптимизмом. То есть критерий выбирает альтернативу с максимальным средним результатом (при этом действует негласное предположение, что каждое из возможных состояний среды может наступить с равной вероятностью). Формально данный критерий выглядит так:

где к - коэффициент пессимизма, который принадлежит промежутку от О до 1 в зависимости оттого, как принимающий решение оценивает ситуацию. Если он подходит к ней оптимистически, то эта величина должна быть больше 0,5. При пессимистической оценке он должен взять упомянутую величину меньше 0,5.

При к = 0 критерий Гурвица совпадает с максимаксиым критерием, а при к = 1 - с критерием Вальда.

Рассчитаем критерий Гурвица для условий нашего примера, придав упомянутому параметру значение на уровне 0,6:

Я, = 16 х 0,6 + (-6) х 0,4 - 7,2;

Я 2 - 12 х 0,6 + 2 х 0,4 = 8;

Я: , = 6 х 0,6 + 0 х 0,4 = 3,6.

По максимуму значения данного критерия надо принять решение о переходе к массовому выпуску новой продукции через год.

В нашем примере стратегия Л 2 фигурирует в качестве оптимальной но трем критериям выбора из четырех испытанных, степень ее надежности можно признать достаточно высокой для того, чтобы рекомендовать эту стратегию к практическому применению. Действительно, в нашем примере при таком решении не придется особенно сожалеть об упущенной прибыли и не придется ожидать больших убытков, т.е. сразу минимизируются и сожаления об упущенной прибыли, и возможные убытки.

Имитационное моделирование по методу Монте-Карло (Monte - Carlo Simulation) позволяет построить математическую модель для проекта с неопределенными значениями параметров и, зная вероятностные распределения параметров проекта, а также связь между изменениями параметров (корреляцию), получить распределение доходности проекта.

Процедура имитации Монте-Карло базируется на последовательности следующих шагов (рис. 10.6).

Метод Монте-Карло наиболее полно характеризует всю гамму неопределенностей, с которой может столкнуться реальный инвестиционный проект, и через задаваемые изначально ограничения позволяет учитывать всю доступную проектному аналитику информацию. Практическая реализация данного метода возможна только с применением компьютерных программ, позволяющих описывать прогнозные модели и рассчитывать большое число случайных сценариев.

Одним из программных продуктов, реализующих метод Монте-Карло, является пакет «Risk Master» (RM), разработанный в Гарвардском университете с целью обучения студентов экспертизе ин- всстиционн ых п роектов.


Рис. 10.6.

Структурно программа RM включает два блока - имитационный и аналитический. В ходе работы первого из них происходит имитация методом Монте-Карло модели инвестиционного проекта, построенной в электронных таблицах. Задачей второго блока программы является анализ полученных на первом этапе результатов и вычисление показателей совокупного риска проекта.

15 процессе работы программы RM математическая модель проекта подвергается повторяющимся имитациям, в ходе каждой из которых ключевые рисковые переменные выбираются случайным образом в соответствии с заранее заданными распределениями вероятностей и условиями корреляции. Затем проводится статистический анализ результатов всех имитаций для получения распределения вероятностей результирующего показателя проекта.

Рассмотрим эти стадии подробнее.

1. Построение математической модели инвестиционного проекта - это первая стадия анализа рисков в соответствии с программой RM. Модель содержит алгебраические и (или) логические соотношения между его факторами (переменными). Она должна включать в себя все важные для проекта переменные (и не включать лишних), а также правильно отражать корреляционные связи между ними. Кроме того, одно из важных требований при разработке модели состоит в необходимости точно предсказывать проектный результат, получаемый на основании внутри модельной обработки входной информации.

Успешное завершение первой стадии позволяет перейти к следующей. Среди известных и важных для проекта факторов выявляются ключевые рисковые проектные переменные. Риск проекта в целом представляет собой функцию риска отдельных переменных оценочной модели, поэтому следует различать, во-первых, тс из них, к которым очень чувствителен результат проекта, и, во-вторых, те, которые обладают высокой степенью неопределенности (сильный разброс значений). Другими словами, есть переменные, значения которых варьируют в большом интервале, не оказывая существенного влияния на отдачу проекта, и есть переменные достаточно стабильные, но даже небольшие отклонения их значений могут вызывать значительный разброс отдачи проекта. Поэтому разбиение всех факторов проекта на соответствующие группы является необходимым по двум причинам:

  • ? во-первых, чем больше рисковых переменных включено в математическую модель, тем сложнее отразить все корреляционные связи между ними;
  • ? во-вторых, затраты, необходимые для нахождения распределений вероятностей и корреляционных зависимостей большого числа переменных, могут превысить выгоду от включения этих переменных в модель.

В связи с этим, представляется целесообразным сфокусировать внимание и имеющиеся ресурсы на определении и проверке предположений относительно наиболее чувствительных (анализ чувствительности) и неопределенных (анализ неопределенности) факторов модели.

Затем в два этапа осуществляется определение распределений вероятностей для выбранных ключевых рисковых переменных.

Первый этап - определение возможного разброса значений для каждой переменной, заключающееся в установлении максимального и минимального значений переменной, т.е. границ, в которых предположительно будут колебаться се значения.

Второй этап - определение распределений вероятностей . По прошлым наблюдениям за переменной можно установить частоту, с которой та принимает соответствующие значения. В этом случае вероятностное распределение есть то же самое частотное распределение, показывающее частоту встречаемости значения, правда, в относительном масштабе (от 0 до 1). Вероятностное распределение регулирует вероятность выбора значений из определенного интервала. В соответствии с заданным распределением модель оценки рисков будет выбирать произвольные значения переменной. До рассмотрения рисков мы подразумевали, что переменная принимает одно определенное нами значение с вероятностью 1. И через единственную итерацию расчетов мы получали однозначно определенный результат. В рамках модели вероятностного анализа рисков проводится большое число итераций, позволяющих установить, как ведет себя результативный показатель (в каких пределах колеблется, как распределен) при подстановке в модель различных значений переменной в соответствии с заданным распределением.

Задача аналитика, занимающегося анализом риска, состоит в том, чтобы хотя бы приблизительно определить для исследуемой переменной вид вероятностною распределения. При этом основные вероятностные распределения, используемые в анализе рисков, могут быть следующими (рис. 10.7): симметричное (например, нормальное, равномерное, треугольное) и несимметричное (например, пошаговое).


Рис. 10.7.

Стадия установления корреляционных связей является очень важной для результативности всего процесса анализа рисков, так как ошибки в выявлении существующих коррелированных переменных модели ведут к серьезным искажениям модельных результатов. Допустим, что цена и количество проданного продукта есть две отрицательно коррелированные переменные. Если не будет учтена связь между ними (коэффициент корреляции), то возможны сценарии, случайно вырабатываемые компьютером, где цена и количество проданной продукции будут либо высоки, либо низки, что естественно негативно отразится на результатах. Поэтому перед проведением имитационных расчетов необходимо выявить все корреляционные зависимости и задать значения коэффициентов корреляции. К достоинствам программного пакета RM относится возможность отражения множественных корреляционных связей.

  • 2. Стадия анализа рисков - проведение расчетных итераций почти полностью выполняется компьютером, па долю аналитика проектных рисков выпадает лишь необходимость задать количество проводимых итераций (от 8 до 10 000). 200-500 итераций обычно достаточно для получения хорошей репрезентативной выборки. В процессе каждой итерации происходит случайный выбор значений ключевых переменных специфицированного интервала в соответствии с вероятностными распсделениями и условиями корреляции. Затем рассчитываются и сохраняются результативные показатели (например, NPV). И так далее, от итерации к итерации.
  • 3. Последней стадией в анализе проектных рисков является анализ результатов , интерпретация результатов, полученных в ходе итерационных расчетов.

Результаты анализа рисков можно представить в виде профиля риска (рис. 10.8). На нем графически показывается вероятность каждого возможного случая (имеются в виду вероятности возможных значений результативного показателя). Часто при сравнении вариантов капиталовложений удобнее пользоваться кривой, построенной на основе суммы вероятностей (кумулятивный профиль риска). Такая кривая показывает вероятность того, что результативный показатель проекта будет больше или меньше определенного значения. Проектный риск , таким образом, описывается положением и наклоном кумулятивного профиля риска.


Рис. 10.8.

Рассмотрим пять иллюстративных случаев принятия решений (учебные материалы Института экономического развития Всемирного банка). Случаи 1-3 имеют дело с решением инвестировать в отдельно взятый проект, тогда как два последних случая (4, 5) относятся к решению-выбору из альтернативных проектов. В каждом случае рассматривается как кумулятивный, так и некумулятивный профили риска для сравнительных целей. Кумулятивный профиль риска более полезен в случае выбора наилучшего проекта из представленных альтернатив , в то время как некумулятивный профиль риска лучше индуцирует вид распределения и показателен для понимания концепций, связанных с определением математического ожидания. Анализ базируется на показателе чистой текущей стоимости NPV.

Случай 1. Минимально возможное значение NPV выше, чем нулевое (рис. 10.9, кривая 1). Вероятность отрицательного NPV равна 0, так как нижний конец кумулятивного профиля риска лежит справа от нулевого значения NPV. Поскольку данный проект имеет положительное значение NPV во всех случаях, ясно, что проект принимается.

Рис. 10.9.

Случай 2. Максимальное возможное значение NPV ниже нулевого (рис. 10.9, кривая 2). Вероятность положительного NPV равна 0, так как верхний конец кумулятивного профиля риска лежит слева от нулевого значения NPV. Поскольку данный проект имеет отрицательное значение NPV во всех случаях, ясно, что проект нс принимается.

Случай 3. Максимальное значение NPV больше, а минимальное - меньше нулевого (рис. 10.9, кривая 3). Вероятность нулевого NPV больше, чем 0, но меньше, чем 1, так как вертикаль нулевого NPV пересекает кумулятивный профиль рисков. Так как NPV может быть как отрицательным, так и положительным, решение будет зависеть от предрасположенности к риску инвестора. По-видимому, если математическое ожидание NPV меньше или равно 0 (пик профиля рисков слева от вертикали или вертикаль точно проходит по пику), проект должен отклоняться от дальнейшего рассмотрения.

Случай 4. Непересекающиеся кумулятивные профили рисков альтернативных (взаимоисключающих) проектов (рис. 10.10). При фиксированной вероятности отдача у проекта В всегда выше, нежели у проекта А. Профиль рисков также говорит о том, что при фиксированной NPV вероятность, с которой та будет достигнута, начиная с некоторого уровня, будет выше для проекта В, чем для проекта А. Таким образом, мы подошли к правилу 1.

Рис. 10.10.

Правило 1. Если кумулятивные профили рисков двух альтернативных проектов не пересекаются ни в одной точке, тогда следует выбирать тот проект, чей профиль рисков расположен правее.

Случай 5. Пересекающиеся кумулятивные профили рисков альтернативных проектов (рис. 10.11). Склонные к риску инвесторы предпочтут возможность получения высокой прибыли и, таким образом, выберут проект А. Несклонные к риску инвесторы предпочтут возможность нести низкие потери и, вероятно, выберут проект В.

Рис. 10.11.

Правило 2. Если кумулятивные профили риска альтернативных проектов пересекаются в какой-либо точке, то решение об инвестировании зависит от склонности к риску инвестора.

Рассмотрим наиболее распространенные показатели совокупного риска проекта.

Ожидаемая стоимость агрегирует информацию, содержащуюся в вероятностном распределении. Она получается умножением каждого значения результативного показателя на соответствующую вероятность и последующего суммирования результатов. Сумма всех отрицательных значений показателя, перемноженных на соответствующие вероятности, есть ожидаемый убыток. Ожидаемый выигрыш - сумма всех положительных значений показателя, перемноженных на соответствующие вероятности. Ожидаемая стоимость есть, конечно, их сумма.

15 качестве индикатора риска ожидаемая стоимость может выступать как надежная оценка только в ситуациях, где операция, связанная с данным риском, может быть повторена много раз. Хорошим примером такого риска служит риск, страхуемый страховыми компиниями, когда последние предлагают обычно одинаковые контракты большому числу клиентов. В инвестиционном проектировании мера ожидаемой стоимости должна всегда применяться в комбинации с мерой вариации, такой как стандартное отклонение.

Инвестиционное решение не должно базироваться лишь на одном значении ожидаемой стоимости, потому что индивид не может быть равнодушен к различным комбинациям значения показателя отдачи и соответствующей вероятности, из которых складывается ожидаемая стоимость.

Издержки неопределенности , или ценность информации, как они иногда называются, - понятие, помогающее определить максимально возможную плату за получение информации, сокращающей неопределенность проекта. Эти издержки можно определить как ожидаемую стоимость возможного выигрыша при решении отклонить проект или как ожидаемую стоимость возможного убытка при решении принять проект.

Ожидаемая стоимость возможного выигрыша при решении отклонить проект иллюстрируется на рис. 10.12 и равна сумме возможных положительных значений NPV, перемноженных на соответствующие вероятности.

Ожидаемая стоимость возможного убытка при решении принять проект, показанная в виде заштрихованной площади на рис. 10.13, равна сумме возможных отрицательных значений NPV, перемноженных на соответствующие вероятности.

Оценив возможное сокращение издержек неопределенности при приобретении дополнительной информации, инвестор решает, отложить решение принять или отклонить проект и искать дополнитель-


Рис. 10.13.

Рис. 10.12. Ожидаемая стоимость возможного выигрыша при решении отложить проект ную информацию или принимать решение немедленно. Общее правило таково: инвестору следует отложить решение, если возможное сокращение в издержках неопределенности превосходит издержки добывания дополнительной информации.

Нормированный ожидаемый убыток - отношение ожидаемого убытка к ожидаемой стоимости. Этот показатель может принимать значения от 0 (отсутствие ожидаемого убытка) до 1 (отсутствие ожидаемого выигрыша). На рисунке 10.13 он представляется как отношение площади под профилем риска слева от нулевого NPV ко всей площади под профилем риска.

Проект с вероятностным распределением NPV, таким что область определения профиля риска NPV выше 0, имеет нормируемый ожидаемый убыток, равный 0, что означает абсолютную неподверженность риску проекта. Проект, область определения профиля риска NPV которого ниже 0, полностью подвержен риску.

Данный показатель определяет риск как следствие двух вещей: наклона и положения профиля риска NPV по отношению к разделяющей вертикали нулевого NPV.

Несмотря на свои достоинства, метод Монте-Карло нс распространен и не используется слишком широко в бизнесе. Одна из главных причин этого - неопределенность функций плотности переменных, которые используются при подсчете потоков наличности.

Другая проблема, которая возникает как при использовании метода сценариев, так и при использовании метода Монте-Карло, состоит в том, что применение обоих методов нс даст однозначного ответа на вопрос о том, следует ли реализовывать данный проект или следует отвергнуть его.

При завершении анализа, проведенного методом Монте-Карло, у эксперта есть значение ожидаемой чистой приведенной стоимости проекта и плотность распределения этой случайной величины. Однако наличие этих данных нс обеспечивает аналитика информацией о том, действительно ли прибыльность проекта достаточно велика, чтобы компенсировать риск по проекту, оцененный стандартным отклонением и коэффициентом вариации.

Ряд исследователей избегают использования данного метода ввиду сложности построения вероятностной модели и множества вычислений, однако при корректности модели метод дает весьма надежные результаты, позволяющие судить как о доходности проекта, так и о его устойчивости (чувствительности).

В зависимости от результатов завершенного анализа рисков, а также и от того, насколько склонен к риску инвестор, последний принимает решение принять, изменить или отклонить проект.

Например, инвестор, исходя из своей склонности к риску, действовал бы следующим образом:

? Риск > 30%.

В случае если показатель риска, а это прежде всего нормированный ожидаемый убыток (НОУ), равен или превышает 30%, то для принятия проекта необходимо предварительно внести и осуществить предложения по снижению риска. Под предложениями понимаются любые действия по изменению данных на входе, способные уменьшить риск, не обрекая проект на убыточность.

В этих целях используются разработанные заранее правила поведения участников в определенных «нештатных» ситуациях (например, сценарии, предусматривающие соответствующие действия участников при тех или иных изменениях условий реализации проекта).

В проектах могут предусматриваться также специфические механизмы стабилизации, обеспечивающие защиту интересов участников при неблагоприятном изменении условий реализации проекта (в том числе, в случаях, когда цели проекта будут достигнуты нс полностью или не достигнуты вообще) и предотвращающие возможные действия участников, ставящие под угрозу его успешную реализацию. В одном случае может быть снижена степень самого риска (за счет дополнительных затрат на создание резервов и запасов, совершенствование технологий, уменьшение аварийности производства, материальное стимулирование повышения качества продукции), в другом - риск перераспределяется между участниками (индексирование цен, предоставление гарантий, различные формы страхования, залог имущества, система взаимных санкций).

Как правило, применение в проекте стабилизационных механизмов требует от участников дополнительных затрат, размер которых зависит от условий реализации мероприятия, ожиданий и интересов участников, их оценок степени возможного риска. Такие затраты подлежат обязательному учету при определении эффективности проекта.

Здесь работает балансировка между риском и прибыльностью. Если на этом этапе удается снизить риск так, что НОУ становится меньше 30%, и есть выбор среди такого рода вариантов проекта, то лучше выбрать тот из них, у которого коэффициент вариации меньше. Если же не удается снизить риск до указанной отметки, проект отклоняется.

? Риск

Проекты с риском менее 30% (НОУ Предлагается создать страховой фонд в размере определенной доли от основной суммы инвестирования. Как определить эту долю - это вопрос методики. Можно принять се равной значению показателя риска (нормированный ожидаемый убыток). То есть, например, если риск равен 25%, то необходимо, скажем, предусмотреть отчисления от нераспределенной прибыли в процессе осуществления проекта или заключить договор со страховой компанией на сумму в размере 25% от основной суммы инвестирования и направить эти деньги в резерв, подлежащий использованию только в случае наступления крайних ситуаций, связанных, например, с незапланированным недостатком свободных денежных средств, а также другими проблемами, в целях нормализации финансово-экономической ситуации. На самом деле источник оплаты страхового фонда скорее всего будет зависеть от периода осуществления проекта. В самый трудный в финансовом отношении начальный момент осуществления проекта у предприятия вряд ли найдется возможность обойтись без внешнего окружения при создании страхового фонда, например, на базе страховой компании. Но по мере осуществления проекта у предприятия накапливается прибыль, ежегодные отчисления от которой могли бы составить страховой фонд.