Меню
Бесплатно
Главная  /  Терминология  /  Наукоемкие технологии. Наукоемкие технологии и их роль в экономике Современные наукоемкие технологии журнал вак

Наукоемкие технологии. Наукоемкие технологии и их роль в экономике Современные наукоемкие технологии журнал вак

Во второй половине XX в. сформировалась категория технологий, отраслей промышленности и изделий, которые получили название «наукоемких» или «высокотехнологичных» (high technology). Технология - совокупность методов и приемов, применяемых на всех стадиях разработки и изготовления определенного вида изделий. Наукоемкость - это показатель степени связи технологии с научными исследованиями и разработками (ИР). Наукоемкая технология включает в себя объемы ИР, превышающие среднее значение этого показателя технологий в определенной области экономики (в обрабатывающей промышленности, в добывающей промышленности, в сельском хозяйстве или в сфере услуг). Наукоемкие отрасли - отрасли хозяйства, в которой преобладающее, ключевое значение играют наукоемкие технологии.

Наукоемкость отрасли –

1) отношение затрат на ИР к объему сбыта;

2) отношение к объему сбыта численности ученых, инженеров и техников, занятых в отрасли;

3) изделия, в себестоимости или в добавленной стоимости которых затраты на ИР выше, чем в среднем по изделиям отраслей данной сферы хозяйства.

Термины и понятия, относящееся к наукоемкости технологий, отраслей и изделий, еще не устоялись, они не стандартизованы, как не стандартизованы и методики определения такого показателя. Одной предпочтительной методологии идентификации высокотехнологичных отраслей промышленности не существует. Согласно закону В. Решера, чтобы темп появления крупных открытий и изобретений не замедлялся, был постоянным, нужно наращивать объем вовлекаемых в сферу науки и техники ресурсов по экспоненциальному закону. Но в течение длительного времени этого не может позволить себе ни одно предприятие или отрасль. В каждой отрасли в соответствии с ее особенностями складывается свой баланс расходов, обеспечивающий устойчивое прибыльное хозяйствование. В составе указанного баланса есть статья расходов на ИР. Объем этих расходов зависит от объемов производства и от объемов сбыта продукции. Чтобы нарастить объем средств, выделяемых на ИР, необходимо расширить рынок сбыта. Отрасль может получить дополнительные средства на ИР от государства, но и на этом уровне работает механизм балансирования расходов. Государство выделяет на поддержку науки определенную долю своего ВВП.
В развитых странах на протяжении последних десятилетий ХХ в. эта доля составляла от 1 до 3% в зависимости от страны. Для того, чтобы увеличить финансирование на науку на 1 млрд. необходимо, чтобы национальный ВВП вырос приблизительно на 40 млрд. Ни в отраслях, ни в масштабах государства выделяемая на ИР доля (ВВП или объема сбыта) не является юридически закрепленным нормативом, она устанавливается как конечный результат множества происходящих в обществе объективных процессов и отражает уровень его социально-экономического, технологического и культурного развития. Такого рода показатели меняются во времени очень медленно.



Какие отрасли промышленности можно отнести к наукоемким? Стандартизованной классификации промышленных производств по данному признаку не существует. Организация экономического сотрудничества и развития (ОЭСР) подробно проанализировала прямые и косвенные расходы на ИР в 22 отраслях промышленности 10 стран (США, Японии, Германии, Франции, Великобритании, Канады, Италии, Нидерландов, Дании и Австралии) с учетом затрат на науку, численность ученых, инженеров и техников. В анализе учтены объем добавленной стоимости и сбыта продукции, доля каждого сектора в общем объеме производства этих стран. К числу наукоемких были отнесены производство компьютеров, конторского оборудования и электронных средств коммуникаций, аэрокосмическая и фармацевтическая промышленность. Целый ряд новых наукоемких отраслей (производство новых материалов, высокоточного оружия, биопродукции и др.) не попали в перечень потому, что в стандартных классификаторах им не выделяется отдельной рубрики, а все статистические материалы собираются и публикуются с учетом указанных классификаторов. Перечень ОЭСР следует рассматривать не как исчерпывающий, а как представительную выборку наукоемких отраслей промышленности, достаточную для того, чтобы выявить их особенности, роль в экономике развитых стран и ситуацию на мировом рынке наукоемкой продукции. В сфере услуг к наукоемким отраслям относятся пять: современные виды связи, финансовые услуги, образование, здравоохранение и так называемые бизнес-услуги, которые включают разработку программного обеспечения, контрактные ИР, консультативные, маркетинговые и прочие услуги, используемые при организации и ведении бизнеса.

Отличие наукоемких отраслей от прочих - высокие темпы роста; большая доля добавленной стоимости в конечной продукции; повышенная заработная плата работающих; крупные объемы экспорта; высокий инновационный потенциал. Высокий уровень расходов на ИР - главный внешний признак наукоемкости отрасли или отдельного предприятия, залог постоянной и интенсивной инновационной активности. Наукоемкие отрасли вносят весомый вклад в промышленное производство. Вклад этот растет опережающими темпами по отношению к прочим отраслям промышленности. Наиболее интенсивно структурная перестройка промышленности в пользу наукоемких отраслей происходила у двух групп стран. Первую составили признанные технологические лидеры - США, Япония и Великобритания, а вторую - Южная Корея и Китайская Народная Республика. Наукоемкие отрасли являются приоритетным полем деятельности малых и средних фирм, а также основным объектом вложений рискового капитала. Ведущими центрами наукоемких технологий являются «три кита» современной мировой экономики - США, Япония и Западная Европа. Последняя по мере продвижения объединительного процесса в рамках ЕЭС заметно укрепляет свои позиции и в перспективе может, по крайней мере, сравняться с США. Совокупные показатели ЕЭС уже сегодня значительно опережают японские. В последнее десятилетие заметным и в какой-то мере знаковым явлением на мировом рынке высоких технологий стало энергичное продвижение стран Юго-Восточной Азии и Китайской Народной Республики. В производстве вычислительной техники и телекоммуникационного оборудования они уже сегодня занимают солидные позиции и стремительно наращивают свою долю мирового рынка.
С инновационным потенциалом наукоемких отраслей связана еще одна особенность - наукоемкие технологии являются благодатной почвой для возникновения и успешной деятельности малых и средних компаний. Известно, что такие фирмы играют в экономике любой страны огромную роль, на них работает едва ли не основная часть населения, они обеспечивают до двух третей ВВП. Еще одна особенность наукоемких отраслей хозяйства (причем главным образом относящаяся к малым предприятиям этих отраслей) - это их тесная связь с венчурным, т.е. рисковым, капиталом. Последний финансирует обычно малые молодые перспективные фирмы, нуждающиеся в средствах для организации производства какой-нибудь новинки, но не имеющие в силу тех или иных причин возможности воспользоваться обычными банковскими кредитами. Объектом венчурного финансирования становятся наукоемкие предприятия. Это хорошо видно на примере США, где рисковый капитал появился раньше, чем в других странах и развит гораздо шире. Наукоемкие отрасли образуют сегодня лидирующую группу в экономике развитых стран, являются основным источником экономического роста и позитивной динамики прочих показателей социально-экономического развития. Наукоемкие технологии и отрасли хозяйства являются сегодня основной движущей силой развития экономики как в масштабах отдельно взятой страны или группы стран, так и в мировом масштабе. В настоящее время наблюдается дальнейшее развитие наукоемких технологий, их проникновение во все отрасли производства и услуг, в повседневный быт людей.

Начале XXI вв., обозначив собой быстро развивающиеся отрасли. К ним можно отнести:

  • Исследования космоса
  • Автоматизированные системы диспетчерского управления (АСДУ)
  • Медицинское оборудование и технологии

Wikimedia Foundation . 2010 .

Смотреть что такое "Наукоемкие технологии" в других словарях:

    Наукоемкие технологии - – технологии, основанные на сокращении числа технологических переходов и повышении информационного содержания с точки зрения экологического соответствия. [Кулик Ю. Г. Малоотходные и ресурсосберегающие технологии: Конспект лекций в ключевых словах …

    Технологии - Термины рубрики: Технологии Автоматизация средств технологического оснащения Автоматизация технологического процесса … Энциклопедия терминов, определений и пояснений строительных материалов

    Наукоемкие отрасли - современные отрасли, выпускающие продукцию на базе последних достижений науки и техники, где доля расходов на научные исследования по совершенствованию технологии и продукции не менее 4 5% всех расходов, а численность научного персонала не менее… … Экономика: глоссарий

    Это служебный список статей, созданный для координации работ по развитию темы. Данное предупреждение не ус … Википедия

    Идеальный товар - товар, который ничего, или почти ничего, не стоит продавцу в производстве, не нуждается в складских помещениях, транспорте для доставки потребителю, компактен и имеет высокую продажную цену. Примеры негативных товаров, близких к идеальным:… … Теоретические аспекты и основы экологической проблемы: толкователь слов и идеоматических выражений

    - … Википедия

    - … Википедия

    - … Википедия

    - (ПНИПУ) Международное название State National Research Polytechnica … Википедия

    Эта статья предлагается к удалению. Пояснение причин и соответствующее обсуждение вы можете найти на странице Википедия:К удалению/20 июня 2012. Пока процесс обсуждения … Википедия

Книги

  • Наукоемкие технологии машиностроительного производства. Физико-химические методы и технологии. Учебное пособие , Ю. А. Моргунов, Д. В. Панов, Б. П. Саушкин, С. Б. Саушкин. В книге представлены основы теории и практическое применение технологий машиностроительного производства, основанных на наукоемких физико-химических методах обработки материалов. Обсуждается…
  • ТРИЗ. Технология творческого мышления , Марк Меерович, Лариса Шрагина. Эта книга ответ на вызов времени о необходимости познать природу креативности и научить человека управлять своей интеллектуальной деятельностью. Развивая возможности знаменитой теории решения…

Наукоемкие технологии производства Характеристика наукоемких технологий

Наукоемкое производство опирается на наукоемкие технологические процессы на всех стадиях производства. Процесс создания наукоемких технологий (НТ) является комплексным, охватывает все этапы его разработки включает: 1) отработку физического процесса, закладываемого в основу создаваемого наукоемкого технологического процесса; 2) проектирование технологического процесса, предусматривающее структурную и параметрическую; оптимизацию; 3) разработку технологического оборудования, оснастки и инструмента, имеющих высокую степень надежности, механизации и автоматизации; 4) изготовление технологического оборудования, оснастки и инструмента; 5) отладку технологического процесса и испытания с целью установления стабильности и точности параметров (рис.1.9).

На каждом этапе создания наукоемкого технологического процесса используются CAE/CAD/CAM системы, применяются методы математического и имитационного моделирования на ЭВМ, осуществляется оптимизация технических и технологических решений.

Приведенному алгоритму создания наукоемких технологий полностью удовлетворяют отработанные и внедренные в серийное производство технологические процессы изготовления основных деталей ГТД.

Технологии изготовления лопаток ГТД

Наиболее ответственными деталями ГТД, работающими в условиях знакопеременных нагрузок, высоких температур и вибрации, являются компрессорные и турбинные лопатки, трудоемкость изготовления которых составляет более 30% от общей трудоемкости изготовления двигателя.

Обобщенный технологический процесс их изготовления можно условно представить в виде совокупности этапов: 1) получение заготовки; 2) термообработка; 3) механическая обработка поверхности хвостовика и полок; 4) механическая обработка профиля пера; 5) термообработка и покрытие; 6) финишная обработка (рис.1.10).

При реализации каждого этапа технологического процесса преследовалась цель обеспечения высокого качества и стабильности ТП за счет применения прогрессивных методов, оборудования, технологической оснастки и инструмента .

На 1-м этапе технологического процесса изготовления компрессорных лопаток применена изотермическая штамповка с припуском по перу 0,8 мм, а также штамповка с припуском 0,3-0,6 мм с термохимической обработкой и применением ЗСП. Это позволило повысить КИМ с 0,12 до 0,42 и уменьшить объем фрезерных работ на 30%

На 2-м этапе с целью сокращения технологического цикла и снижения затрат электроэнергии осуществлено совмещение горячей деформации с процессом термообработки.

На 3-м этапе при протачивании хвостовика применено ориентирование профиля пера лопатки в оптимальном положении в специальных установках и закрепление лопаток в специальных кассетах. Это позволило обеспечить обработку лопаток с минимальным припуском по профилю.

На 4-м этапе (механическая обработка профиля пера) используется ленточное шлифование на специальных станках с использованием широкой и узкой лент. Это дало сокращение ручного труда при подгонке профиля пера на 75%.

На 5-м этапе (термообработка и покрытие) с целью обеспечения равномерности структуры поверхностного слоя применен отжиг лопаток.

На 6-м этапе (финишная обработка) внедрено гидродробеструйное упрочнение, что позволило повысить усталостную прочность на 25%.

На 1-м этапе изготовления турбинных лопаток применено литье по выплавляемым моделям с направленной кристаллизацией и моноструктурой, а также точная объемная штамповка с использованием ЗСП под термообработку. Это позволило получать лопатки без припуска по ГВТ и обеспечило получение заготовок с минимальным припуском.

На 2-м этапе с целью обеспечения прочностных характеристик и уменьшения коробления выбрана высокотемпературная вакуумная обработка, а также фиксированная термообработка с применением керамической массы.

На 3-м этапе с целью повышения точности и стабильности технологического процесса применено глубинное шлифование елочного хвостовика и других фасонных поверхностей.

На 4-м этапе с целью исключения ручного труда при подгонке профиля пера лопатки производится механизированное полирование и заправка кромок.

На 5-м этапе применено четырехкомпонентное покрытие профиля пера лопаток и алитирование, что позволило повысить жаростойкость и увеличить ресурс в 2 раза.

На 6-м этапе осуществлено упрочнение микрошариками, что повысило усталостную прочность на 20%.

Перечисленные мероприятия на всех этапах обобщенного процесса позволили повысить качество и стабильность ТП и сократить трудоемкость обработки лопаток в общей трудоемкости изготовления двигателя с 35 до 28%.

Технологии изготовления дисков

Как показывает отечественная и зарубежная практика, диски компрессора, и особенно турбин, являются теми деталями, которые во многом определяют надежность и ресурс ГТД. В связи с этим осуществляется тщательная обработка технологических процессов их изготовления.

Рис. 1.9. Основные этапы создания наукоемкого технологического процесса

На большинстве операций ТП применяется уникальное оборудование и используются высококвалифицированные кадры рабочих и ИТР .

Заготовки дисков как компрессоров, так и турбин поступают на предприятие по кооперации со специализированного завода, где они подвергаются предварительной механической обработке, термообработке, старению и ультразвуковому контролю.

После всестороннего входного контроля механическая обработка дисков осуществляется на высокоточных станках с числовым программным управлением (рис. 1.11).

Особое внимание в ТП уделено вопросам термообработки, которая проводится в вакуумных печах с целью снятия внутренних напряжений, возникающих на этапе механической обработки.

После каждого этапа ТП осуществляется ультразвуковой контроль полотна и обода диска, а также капиллярный контроль всех поверхностей.

На этапе финишной обработки диски компрессоров и турбин подвергаются упрочнению микрошариками. Это позволяет повысить усталостную прочность на 15-18%.

Технологии изготовления валов

Изготовление заготовок валов компрессора и турбины, как и заготовок дисков, осуществляется на специализированном предприятии и поступает на предприятие по кооперации.

Поступающие заготовки валов уже подвергнуты предварительной механической обработке и термообработке с целью выравнивания внутренних остаточных напряжений. Основные этапы технологических процессов изготовления валов компрессора и турбины представлены на рис. 1.12.

Рассмотренные наукоемкие технологии изготовления лопаток; дисков, валов компрессора и турбины ГТД, созданные на основе использования приведенных подходов, должны удовлетворять следующим требованиям:

    Технологический процесс должен быть малоотходным и экологически чистым. Примером такого процесса является изготовление деталей из порошков и гранул, применение вакуумных технологий и другие.

    Наукоемкие технологии должны использовать оборудование с числовым программным управлением, позволяющим интегрировать на одном операционном поле (в рабочей зоне одной и той же технологической установки) выполнение ряда операций .

    В заготовительных операциях НТ должны применяться методы прямого выращивания сложнофасонных деталей из расплава а также статические и динамические методы пластического деформирования при минимуме формообразующей оснастки.

    Наукоемкие технологии должны обладать автоматизированными объективными средствами испытания и контроля параметров на всех этапах технологического процесса, иметь в составе основного оборудования встроенные устройства контроля и управляющие ЭВМ.

    Наукоемкий технологический процесс должен быть автоматически программируемым и адаптироваться к изменяющимся условиям производственной среды при одновременном достижении оптимальных параметров на основе CAD\CAM систем.

    Неотъемлемым условием наукоемкого технологического процесса является его сертификация, т.е. соответствие его параметров международным нормам и стандартам.

Контрольные вопросы к лекции 3.

    Структурная схема создания наукоемкой технологии

    Обобщенный технологический процесс изготовления компрессорных и турбинных лопаток ГТД

    Технология изготовления дисков компрессор и турбин

    Технология изготовления валов компрессорных и турбинных

    Требования к наукоемким технологическим процессам

ЖУРНАЛ «СОВРЕМЕННЫЕ НАУКОЕМКИЕ ТЕХНОЛОГИИ» ВКЛЮЧЕН В ПЕРЕЧЕНЬ ВАК С 1 ДЕКАБРЯ 2015 ГОДА.

Редакция журнала и ИЗДАТЕЛЬСКИЙ ДОМ "Академии Естествознания" приглашают научных сотрудников, педагогов, соискателей и аспирантов к сотрудничеству в рамках научного журнала «СОВРЕМЕННЫЕ НАУКОЕМКИЕ ТЕХНОЛОГИИ».

В НАСТОЯЩЕЕ ВРЕМЯ ВЕДЕТСЯ ПРИЕМ СТАТЕЙ ДЛЯ ПУБЛИКАЦИИ В №12 и № 1 за 2016 г. ЖУРНАЛА
«СОВРЕМЕННЫЕ НАУКОЕМКИЕ ТЕХНОЛОГИИ», ВХОДЯЩЕГО В ПЕРЕЧЕНЬ ВАК.

В журнале «Современные наукоемкие технологии» публикуются статьи проблемного и научно-практического характера по следующим научным направлениям:

Технические науки
05.02.00 Машиностроение и машиноведение
05.13.00 Информатика, вычислительная техника и управление
05.17.00 Химическая технология
05.23.00 Строительство и архитектура

Педагогические науки
13.00.00 Педагогические науки

Предоставляйте статьи, оформленные согласно ПРАВИЛАМ ДЛЯ АВТОРОВ.
Во вложении - ПРАВИЛА ДЛЯ АВТОРОВ журнала.

Импакт - фактор РИНЦ (двухлетний) = 1,030 (по состоянию на 01.02.2016 г.)

ВНИМАНИЕ! Публикации в изданиях РАЕ обеспечивают Ваш личный быстрый рост индекса Хирша - основной общепризнанной количественной характеристики продуктивности ученого.
Наглядно вклад публикаций в изданиях РАЕ в увеличение индекса Хирша можно проанализировать, воспользовавшись сервисом
Российской научной электронной библиотеки (http://elibrary.ru/).
Активное цитирование работ, опубликованных в журналах РАЕ, связано с высоким импакт-фактором и SCIENCE INDEX РИНЦ журналов,
а также ТИЦ сайтов журналов в поисковой системе Yandex и PR Google.

Журнал «СОВРЕМЕННЫЕ НАУКОЕМКИЕ ТЕХНОЛОГИИ» http://www.top-technologies.ru/ru
Журнал основан в 2003 году.

Журнал зарегистрирован в Centre International de l"ISSN. ISSN 1812-7320

По данным Российской электронной библиотеки (НЭБ) журнал имеет одно из
первых мест в рейтинге SCIENCE INDEX среди междисциплинарных журналов.

Правила для авторов - во вложении и на сайте

Издание зарегистрировано в Министерстве РФ по делам печати, телерадиовещания и средств массовых коммуникаций.
Свидетельство о регистрации ПИ №77-15597.

Главный редактор: д.м.н., профессор М.Ю. Ледванов

Зам. главного редактора: к.м.н. Н.Ю. Стукова
Ответсвенный секретарь журнала:к.м.н. Бизенкова М.Н.

Журнал включен в Реферативный журнал и Базы данных ВИНИТИ.

Благодаря возможностям современного издательства, редакция журнала размещает статьи в свободном бесплатном доступе,
что позволяет применить современные технологии популяризации Ваших исследований, и значительно увеличить Ваш индекс научного цитирования.

Сведения о журнале ежегодно публикуются в международной справочной системе по периодическим и продолжающимся изданиям
«Ulrich"s Periodicals directory» в целях информирования мировой научной общественности.
Журнал представлен в ведущих библиотеках страны и является рецензируемым.

Журнал представлен в НАУЧНОЙ ЭЛЕКТРОННОЙ БИБЛИОТЕКЕ (НЭБ) - головном исполнителе проекта по созданию
Российского индекса научного цитирования (РИНЦ) и имеет высокий импакт-фактор Российского индекса научного цитирования ИФ РИНЦ = 1,030

Полные тексты статей, опубликованных в журнале, размещены на сайте Российской Академии Естествознания http://www.rae.ru/ в разделе ИЗДАНИЯ.

  • Через « Личный портфель автора » http://www.top-technologies.ru/ru/rules/index . Взаимодействие с редакцией посредством « Личного портфеля автора » позволяет в режиме on-line представлять статьи в редакцию, добавлять, редактировать и исправлять материалы, оперативно получать запросы из редакции и отвечать на них, отслеживать в режиме реального времени этапы прохождения статьи в редакции.
  • По электронной почте: Экспертиза присланных работ и сопроводительных документов в издательстве проходит в течение 14 рабочих дней после поступления документов в издательство по электронной почте Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра. , Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.

Работы, поступившие через «Личный ПОРТФЕЛЬ автора», публикуются в первую очередь.
Через «Личный портфель автора» или по электронной почте в редакцию направляются:

  • материалы статьи
  • сведения об авторах
  • сканированная копия сопроводительного письма
  • копии двух рецензий докторов наук
  • копия экспертного заключения (о возможности публикации материалов в открытой печати)
  • копия документа об оплате

Оригиналы запрашиваются редакцией при необходимости.

ВНИМАНИЕ! РЕГЛАМЕНТ РАБОТЫ РЕДАКЦИИ:

  • Информацию о поступлении документов и статьи в редакцию журнала - (до 14 дней).
  • Информацию о факте подписания статьи в печать с указанием номера журнала - (до 14 дней).
  • Информацию о полных выходных данных опубликованной статьи и возможности получения журнала, а также сроках размещения журнала на сайте http://www.rae.ru/ и
  • сайте электронной библиотеки (при использовании сервиса "Личный портфель" - до 21 дня).

Для авторов журнала на сайте http://www.rae.ru/ на главной странице
работает уникальный сервис ПОИСК РАБОТ http://search.rae.ru/ , предоставляющий информацию о прохождении статей в редакции.

Рис. 10.7. Оребренный профиль поверхность

Рис. 10.7. Деформирующий резец, создающий оребренную поверхность методом пластического оттеснения материала в зоне резания

Рис. 10.6. Основные характеристики прогрессивных технологий нового поколения

Рис. 10.5 Этапы жизненного цикла технологий

Рис. 10.4. Модель системы технологических преобразований (базовая модель технологии)

Воздействия, оказываемые на систему технологических преобразований со стороны других систем, могут быть представлены следующим множеством:

где - вектор обобщенного входа; - входные обобщенные воздействия материального типа; - входные обобщенные воздействия энергетического типа; - входные обобщенные воздействия информационного типа; - момент времени.

Входные воздействия оказывают различное действие на систему технологических преобразований.

Основные задачи входных воздействий следующие: обеспечение необходимой структуры объектов; реализация требуемою поведения объектов; восстановление пото¬ков технологического воздействия орудий и средств обработки на изделия и другие.

Воздействия, реализуемые системой технологических преобразований на другие системы, могут быть описаны следующим образом:

где - вектор обобщенного выхода; - выходные обобщенные воздействия материального типа; - выходные обобщенные воздействия энергетического типа; - выходные обобщенные воздействия информационного типа.

Входные и выходные обобщенные воздействия включают как основные потоки различных типов, направленные на прогрессивное развитие системы, так и побочные (вредные, сопутствующие), оказывающие отрицательное влияние на качественные показатели развития.

Проектирование технологии подразумевает учет противоречивых требований, причем продуктами его являются модели, позволяющие понять структуру будущей технологии. Однако разработка технологии остается до сих пор трудоемким процессом, целью которого является: обеспечение требуемого алгоритма функционирования (технологического воздействия); реализация приемлемой цены; удовлетворение явным и неявным требованиям по эксплуатационным качествам, ресурсопотреблению и дизайну; удовлетворение требованиям к стоимости и продолжительности разработки технологии. При этом процессы проектирования технологий могут выполняться по различным схемам. Этапы традиционного жизненного цикла технологии характеризуются лавинообразным нарастанием сложности (рис. 10.5). Во многих компаниях и фирмах такую схему создания технологий рассматривают как незыблемую. Однако, несмотря на силу традиций, анализ жизненного цикла технологии показывает следующие недостатки этой схемы:


Непригодность для разработки сложных технологий, состоящих из большого количества подсистем и автономных модулей, образующих сетевые структуры;

Обязательно последовательное выполнение всех этапов создания технологии;

Несовместимость с эволюционным подходом;

Несовместимость с перспективными методами автоматизированного проектирования и управления технологиями.

Поэтому для создания прогрессивных технологий традиционные методы не подходят.

Начинает развиваться объектно-ориентированное проектирование, что особенно перспективно для создания новых технологий. В основе объектно-ориентированного проектирования лежит объектный подход, главными принципами которого являются: абстрагирование, ограничение доступа, модульность, иерархичность, типизация, параллелизм и устойчивость.

На рис. 10.5 показаны этапы жизненного цикла технологии при объектноориентированном проектировании. Здесь процесс создания технологии не является отдельным монолитным этапом. Он представляет собой один из шагов на пути последовательной итеративной разработки технологии; при этом последовательность шагов может иметь произвольный характер. Частный вариант последовательной итеративной разработки технологии с направленными шагами через анализ представлен также на рис. 10.5.

Применение описанных моделей позволило определить основные характеристики прогрессивных технологий нового поколения, которые, дополняя известными данными, можно представить структурной схемой, изображенной на рис. 10.6. Она имеет иерархическую структуру и содержит основные признаки, особенности и обеспечение прогрессивных технологий. Основные признаки, характеризующие прогрессивность новых технологий, даны на структурной схеме (рис. 10.6) относительно конечного результата их действия - изделий. Эти признаки можно представить следующими категориями:

Качественно новая совокупность свойств изделий (причина);

Качественно новая мера полезности изделий (следствие).

С развитием науки и техники создаются возможности для улучшения свойств изделий, например, геометрических, кинематических, механических, тепловых, оптических и других, а также реализуются качественно новые свойства изделий, например, экологические, манипуляционные, отражения жестких космических лучей, свойства обладания эффектом «магнитная потенциальная яма» и др. Для обеспечения этого проектируемые технологии непрерывно совершенствуются и создаются качественно новые. Они будут придавать качественно новые свойства изделиям.

Однако, только мера этих свойств - полезность этих изделий или их ценность, имеет решающее значение, так как конечной целью изготовления любого изделия является обеспечение необходимой ценности. Создаваемые прогрессивные технологии непрерывно повышают ценность изделий и соответственно реализуют качественно новую меру их полезности, обеспечивается возможность использования их в работах n-го поколения, для «гипердвигателей» межгалактических кораблей, для марсианского транспорта, построенного по принципу мехатроники, и др.

Создаваемые прогрессивные технологии нового поколения имеют некоторые базовые особенности, основные из которых могут быть связаны с высокой наукоемкостью их создания, сложностью реализации и функционирования; при этом необходимы высокая информационность и компьютеризация, определенный уровень электрификации и энергообеспечения, поэтому проектирование новых технологий должно базироваться на оптимальных технологических процессах. При необходимости могут быть использованы новые методы преобразования заготовок в изделия. Для этого должны применяться прогрессивные методы производства. На всех этапах жизненного цикла (см. рис. 10.5) новых технологий необходимо обеспечивать высокую степень автоматизации процессов. Созданные технологии должны иметь высокую устойчивость и надежность функционирования по заданному алгоритму. Все это должно быть тщательно проработано на основе принципов объектно-ориентированного подхода и обеспечена экологическая чистота технологий. Вместе с тем, создаваемые технологии должны быть открытыми к развитию и иметь возможность эволюционировать и модифицироваться в соответствии с изменяющимися внешними условиями. Кроме того, прогрессивные технологии могут иметь ряд других особенностей, относящихся к специальным технологиям или технологиям будущего.

Для создания прогрессивных технологий нового поколения необходимо нетрадиционное обеспечение, а именно: высококвалифицированные кадры, прогрессивные технологические системы и специальные технологические среды. В этом случае проектирование технологических систем должно, прежде всего: определяться конъюнктурой рынка; основываться на новых принципах, свойствах и качестве композиции элементов оборудования; иметь высокие уровни автоматизации, производительности и прецизионности оборудования, оснастки и инструментов. Созданные технологические системы должны быть эстетичны и эргономичны, иметь высокую устойчивость и надежность функционирования. Для этого широко должны быть использованы комплексные системы диагностики, контроля и управления, а также новые принципы работы оборудования и методы воздействия орудий и средств обработки на изделия. Такой комплексный подход в создании прогрессивных технологических систем дает качественно новые нетрадиционные технико-экономические показатели их создания и функционирования.

Проведенные исследования в последние десятилетия с использованием разработанных моделей позволили определить и дополнить известные тенденции прогрессивного развития технологий новыми, к которым можно отнести следующие;

Повышение концентрации и параллелизма технологических зон обработки, обеспечивающих повышение производительности;

Создание нетрадиционных прогрессивных пространственных структур технологических зон обработки (создание многомерных циклических структур, повышение размерности многообразия и объектов в каждом многообразии структуры), реализующих повышение технологических возможностей пространства и среды;

Компоновка технологических зон обработки в линейные, поверхностные и объемные структуры; компоновка этих структур в производственные ячейки; компоновка производственных ячеек в пространственные структуры и заполнение ими всего объема пространства производственного цеха с возможностью изменения их пространственного расположения;

Повышение степени ком па компактирования структуры за счет увеличения плотности (линейной, поверхностной, объемной) технологических зон обработки;

Организация поточности функционирования технологических зон обработки и повышение их интенсивности;

Повышение непрерывности и устойчивости функционирования технологических систем в соответствии с заданным алгоритмом;

Повышение информационности технологий, снижение массы технологических систем и повышение их энергообеспеченности;

Создание технологий и технологических систем с использованием принципа механотроники;

Упрощение функциональной структуры за счет совмещения различных функций технологических систем; выполнение технологических функций посредством транспортных функций, и наоборот;

Применение комплексных систем диагностики, контроля и управления процессами.

Анализ этих тенденций, позволяя сформулировать и разработать общий теоретический подход в создании и функционировании нетрадиционных технологических систем, называемых поточно-пространственными технологическими системами. Эти технологические системы имеют качественно новые свойства и возможности, а также существенно повышают уровень автоматизации и интенсификации производственных процессов. Разработанная общая методика синтеза дает возможность создавать поточнопространственные технологические системы непрерывного действия следующих видов:

Технологические системы высокой и сверхвысокой производительности для производства изделий медицинской, радиоэлектронной, пищевой промышленностей, приборостроения и других отраслей народного хозяйства;

Технологические системы непрерывного действия для длительных циклов технологического воздействия (термические, химические, физико-химические методы обработки и др.);

Технологические системы непрерывного действия для комплексной обработки изделий;

Гибкие технологические системы непрерывного действия.

Эти технологические системы позволяют значительно повысить производительность производственных процессов, сократить занимаемые оборудованием производственные площади, уменьшить длительность производственного цикла, число рабочих, занятых в производстве, и улучшить другие показатели.

Данная методология, ориентированная на конечную цель, - создание прогрессивных технологий, дает возможность видеть взаимосвязи, понимать и применять целостность как принцип проектирования. Создаваемые технологии являются отражением современного развития техники; теория их создания позволяет объяснить и предсказывать закономерности эволюционного процесса развития прогрессивных технологий.

Методология разработки новых методов обработки базируется на предложенной концепции нового научного подхода к решению этой проблемы, основанной на единстве технологии изготовления и эксплуатации деталей машин и их соединений.

Так, для повышения долговечности пар трения необходимо, как только возможно, уменьшить их приработку в процессе эксплуатации. Этого добиваются финишной обработкой поверхностей трения, моделирующей ускоренный процесс их приработки. В соответствии с разработанной теорией трения и износа, процесс приработки представляет микрорезание и пластические деформации микронеровностей поверхностей трения.

Обеспечить этот процесс приработки можно на стадии финишной обработки поверхности трения специальным инструментом с моделированными микронеровностями. Рабочая поверхность инструментов должна проскальзывать по поверхности трения обрабатываемой детали, вызывая микрорезание и микродеформирование ее шероховатости. В качестве такого инструмента могут быть использованы притирочный абразивный брусок (с определенной зернистостью) или иглофреза (с определенным диаметром рабочих иголок). Усилия прижатия и скорость проскальзывания инструмента определяются условиями эксплуатации обрабатываемой поверхности трения.

В зубчатых передачах в процессе приработки изменяется форма эвольвентной поверхности, увеличивается боковой зазор, что ведет к росту шума, изменению линии контакта и разрушению зубьев. Избежать этого явления можно, если в процессе изготовления и приработки зубчатых передач смоделировать все эти процессы: при зубонарезании и шлифовке зубьев - обеспечить их эксплуатационный профиль, а при обкатке - равновесное состояние качества поверхности. Для этого должен быть скорректирован рабочий профиль фрезы и шлифовального крут. Это, в свою очередь, говорит о необходимости учета при проектировании инструмента функционального назначения обрабатываемой поверхности.

Для окончательной обработки боковых поверхностей зубчатых колес может быть использована обкатка или специальная технология финишной обработки, обеспечивающая процесс микрорезания и пластических деформаций микронеровностей. Финишная обработка обеспечивается алмазным или обычным шевингованием.

Использование теории пластичности и контактного взаимодействия позволило создать новый метод обработки деталей, позволяющий значительно увеличить (в десятки раз) их поверхность соприкосновения с окружающей средой. В частности, это и имеет огромные значения при создании теплообменников.

Используя уравнения пластического оттеснения обрабатываемого материала в зоне резания (3.36)-(3.40), спроектирован и изготовлен совершенно новый инструмент (рис. 10.7), который при определенном сочетании свойств обрабатываемого материала и режимов (глубина и подача) позволяет эффективно осуществлять вытеснение материала и создавать оребренную поверхность, имеющую высокую теплообменную способность (рис. 10.8). 

Известно, что тот или иной метод обработки реализуется через выполнение технологических операций, объединение которых в одной детали представляет из себя технологический процесс.

В условиях жесткой рыночной экономики создание новых технологических процессов диктуется необходимостью повышения качества и снижения себестоимости выпускаемых изделий. Если классическая типовая технология не позволяет уже производить изделие с качеством и себестоимостью, обеспечивающими ее конкурентоспособность, то объективно возникает проблема создания нового технологического процесса. Например, появление новой технологии зубчатых колес с цельнокатаными зубьями.

Экономический эффект от новых технологических процессов значительно возрастает при принятии предложенной теории единства процесса проектирования, изготовления, эксплуатации и ремонта,

Экономическая целесообразность ремонта крупногабаритных изделий поставила перед технологами задачу - создание новых технологических процессов восстановления деталей по месту. Так, необходимость восстановления цилиндрической формы ячеек реакторов атомных электростанций по месту привело к разработке совершенно нового, нетрадиционного технологического процесса. Реализация, которого осуществляется с использованием нетрадиционной инструментальной системы (d = 120 мм и / = 20 м) с автономным приводом главного движения зенкера, перемещаемым под собственным весом и удерживаемым подъемным краном.

Экономическая целесообразность восстановления цементных печей обжига, валков прокатных станов, лифтовых шкивов и других изделий по месту привело к созданию нового переносного технологического оборудования. При этом главное движение восстанавливаемого изделия обеспечивается эксплуатационным приводом, а остальные не-обходимые движения для обработки - навесным технологическим оборудованием.

В процессе эксплуатации железнодорожных рельсов их поперечный профиль в зависимости от участка дороги (повороты, подъемы, подложка, средние температуры и др.) в начальный период работы (процессе приработки) претерпевает значительные изменения, то есть происходит его естественная адаптация к условиям эксплуатации. Однако эксплуатационники железных дорог при ремонте рельсов стремятся вернуть им исходный поперечный профиль, что значительно удорожает ремонт и опять приводит к быстрому и большому их износу в период новой приработки. Все это в значительной мере сокращает долговечность железнодорожных рельсов.

Учитывая эти обстоятельства, целесообразно при ремонте рельсов сохранять сформировавшийся поперечный профиль, убирая при этом вредный дефектный поверхностный слой. Обеспечить это могут так называемые упругие технологии (иглофрезерование, лепестковое шлифование). Вследствие упругих деформаций рабочих элементов инструмента (проволочек и лепестков), при определенном сохранении жесткости, они позволяют снимать поверхностный дефектный слой и сохранять сформировавшийся поперечный профиль. Это приводит к необходимости целенаправленной разработки инструмента с определенной упругостью его рабочих элементов.

Для устранения продольной волнистости с высокой производительностью целесообразно применить шлифование брусками с поперечной осцилляцией. Объединить все эти операции: иглофрезерование, шлифование брусками и лепестковыми кругами в единый технологический процесс текущего ремонта железнодорожных рельсов позволяет специальный рельсообрабытывающий комплекс.

На поворотных участках в результате большого силового и температурного воздействия на боковые поверхности головки рельса от реборды колеса происходит их быстрый износ (практически срезание), что приводит к необходимости быстрой их замены. Для избегания этого вредного явления эти воздействия сил и температур на боковые поверхности рельс на этих участках дорог целесообразно из эксплуатации перенести в технологический процесс с увеличением температурного и уменьшением силового воздействия. Это позволяет обеспечить термомеханическая и электромеханическая обработки.

Все это позволяет предложить совершенно новый технологический процесс ремонта железнодорожного полотна и создать рельсообрабатывающий комплекс нового поколения.

Резьбовые соединения имеют различное функциональное назначение. Кроме этого, различные участки резьбовых соединений по их длине будут испытывать различные нагрузки: начиная от максимальных (на первых витках) до нулевых (на последних витках). Поэтому технология изготовления резьбовых соединений требует своего совершенствования, которое может быть реализовано на ее взаимосвязи с их функциональным назначением (рис. 10.9).

Рассмотрим пример. При эксплуатации различных двигателей обнаружен процесс самоотвинчивания шпилек. Это происходит из-за уменьшения первоначального натяга в резьбовом соединении «шпилька - алюминиевый корпус» в результате пластических деформаций резьбы корпуса при действии динамических нагрузок. Избежать этого вредного явления можно, если обеспечить раскатывание резьбовых отверстий в корпусе или создание так называемых гладкорезьбовых соединений. Для раскатывания резьб необходима целенаправленная разработка инструмента. Сущность гладкорезьбового соединения заключается в вворачивании шпилек в гладкие отверстия. Как в первом, так и во втором случаях, в процессе формирования резьбы отверстия происходит пластическое насыщение материала, что предотвращает возможность ее пластических деформаций при эксплуатации.

При этом новый технологический процесс создания гладкорезьбовых соединений позволяет его осуществлять на станках с ЧПУ в автоматизированном режиме, так как отпадает надобность осуществлять ручное наживлеиие шпилек.

Концепция объединения технологий производства и эксплуатации позволяет некоторые процессы из производства переносить в эксплуатацию. Например, для повышения износостойкости пар трения - скольжения в условиях граничного трения зачастую на одну из поверхностей трения при изготовлении наносят мягкую пленку. Взамен этой операции можно при эксплуатации ввести глицерин и медный порошок. Это позволит на поверхности трения аналогичным образом, но уже при эксплуатации, сформировать мягкую антифрикционную пленку, обеспечивающую явление избирательного переноса.

Конструирование направляющих скольжения металлорежущих станков с бронзовыми вставками и введение в смазку глицерина позволяет повысить их износостойкость при эксплуатации в несколько раз.

Таким образом, научное развитие технологии машиностроения показывает, что она готова решать самые сложные задачи при производстве изделий машиностроения в XXI веке. Только за последние 50 лет наукой о технологии машиностроения разработано более 80 новых методов обработки, повышающих качество и снижающих себестоимость изготовления машиностроительных изделий.

Наукоемкими конкурентоспособными считаются такие технологии, которые базируются на последних достижениях науки; системном построении; моделировании; оптимизации себестоимости изготовления, эксплуатации и ремонта изделия; новых и комбинированных наукоемких методах обработки и техпроцессах; компьютерной технологической среде и комплексной автоматизации производства, что позволяет им быть конкурентоспособными.

Реализация таких технологий требует соответствующего технического оснащения (прецизионное высокоточное оборудование, технологи чес кал оснастка и инструмент для механической, физико-химической и комбинированной обработки, в том числе и по нанесению различных покрытий, автоматизированные системы диагностики и контроля, компьютерные сети) и кадрового обеспечения (высокая квалификация всех работников, научное консультирование и др.).

Как правило, наукоемкие технологии в машиностроении применяются для повышения функциональных свойств изделий и их конкурентоспособности.

Структурно это представлено на рис. 10.10.

Основным свойством наукоемких технологий являются результаты фундаментальных и прикладных исследований, на которых они базируются.

Системность предполагает диалектическую взаимосвязь, взаимодействие всех элементов технологической системы, всех основных процессов, явлений и составляющих. Системность особо важна как требование прецизионности и соответствие этим требованиям всех структурных элементов технологической системы обработки и сборки (оборудование, инструмент, обрабатываемый материал, оснастка, измерения, диагностика, работа исполнительных органов).

Рис. 10.10 Структура наукоёмких конкурентоспособных технологий

Важнейшим свойством наукоемких технологий, безусловно, является новый техпроцесс. Он доминирует во всей технологической системе и должен отвечать самым разнообразным требованиям, но, главное, быть потенциально способным обеспечить достижение нового уровня функциональных свойств изделия. Здесь богатыми возможностями обладают те устойчивые и надежные техпроцессы, в которых эффективно используются физические, химические, электрохимические и другие явления в сочетании со специальными свойствами инструмента, технологической среды, например, криогенное резание, диффузионное формообразование изделий и т.п.

Разработка новых техпроцессов имеет поэтапный характер:

1. На этапе маркетинга оценивается изделие как совокупность потребительских свойств, а затем определяется уровень тех потребительских свойств изделия, которые в состоянии обеспечить его конкурентоспособность,

2. Исходя из этого, определяются требования к качеству изделий, узлов, сборке в соответствии с уровнем функциональных, экологических и эстетических свойств и оптимальной их долговечности.

3. Выделение из требуемых геометрических, физико-химических параметров качества поверхностного слоя деталей тех, достижение которых требует нетрадиционных решений, как при изготовлении, так и эксплуатации.

4. Определение традиционных критериев для уровня характеристик нетрадиционного техпроцесса, потенциально способного обеспечить получение требуемых функциональных, эстетических и экологических свойств изделия.

5. Выявление предпосылок создания нового техпроцесса на базе использования традиционных и нетрадиционных способов обработки и технического оснащения.

6. Создание физической и математической модели техпроцесса и их виртуальное, теоретическое и экспериментальное исследование,

7. Многопараметрическая оптимизация техпроцесса (физические, технологические, экономические критерии).

8. Создание систем диагностики техпроцесса и его технического оснащения.

9. Разработка технологического процесса.

10. Оценка соответствия реального уровня функциональных, эстетических, экономических свойств изделия требуемому.

Несомненно, существенным признаком наукоемких технологий является комплексная автоматизация, базирующаяся на компьютерном управлении всеми процессами проектирования, изготовления и сборки, на физическом, геометрическом и математическом моделировании, всестороннем анализе моделей процесса или его составляющих.

Наличие рассматриваемого признака требует системного подхода к ее компьютерно-интеллектуальной среде, т.е. перехода к системам CAD/CAM System. Таким путем обеспечивается сочетание гибкости и автоматизации, прецизионности и производительности.

Системный подход предполагает использование не отдельных математических моделей, а системы взаимосвязанных моделей с непременной параметрической и структурной оптимизацией. Например, параметрическая оптимизация преследует цель минимизации ряда характеристик процесса размерной обработки, прежде всего энергетических затрат, минимизации толщины срезов, силы резания и уровня температуры, интенсивности окислительных процессов и т.д.